Self Studies
Selfstudy
Selfstudy

Engineering Mathematics Test 9

Result Self Studies

Engineering Mathematics Test 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The amplitude of \({e^{{e^{ - i\theta }}}}\) is equal to
    Solution

    Explanation:

    Using: e = cos θ + i sin θ 

    \({e^{{e^{ - i\theta }}}} = {e^{\left( {\cos \theta - i\sin \theta } \right)}} = {e^{\cos \theta }}{e^{ - i\sin \theta }}\)

    \({e^{\cos \theta }}{e^{ - i\sin \theta }} = {e^{\cos \theta }}\left( {\cos \left( {\sin \theta } \right) - i\sin \left( {\sin \theta } \right)} \right)\)

    \({e^{{e^{ - i\theta }}}} = {e^{\cos \theta }}\cos \left( {\sin \theta } \right) - i{e^{\cos \theta }}\sin \left( {\sin \theta } \right)\)

    \({\rm{amp}}\left( {\rm{z}} \right){\rm{ = ta}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{{{\rm-{e}}^{{\rm{cos\theta }}}}{\rm{sin}}\left( {{\rm{sin\theta }}} \right)}}{{{{\rm{e}}^{{\rm{cos\theta }}}}{\rm{cos}}\left( {{\rm{sin\theta }}} \right)}}} \right){\rm{ = -ta}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {\frac{{{\rm{sin}}\left( {{\rm{sin\theta }}} \right)}}{{{\rm{cos}}\left( {{\rm{sin\theta }}} \right)}}} \right){\rm{ =- ta}}{{\rm{n}}^{{\rm{ - 1}}}}\left( {{\rm{tan}}\left( {{\rm{sin\theta }}} \right)} \right){\rm{ =- sin\theta }}\)

    Important Point:

    z = x + iy

    Modulus: r = √(x2 + y2)

    Amplitude or argument: θ = tan-1(y/x)

  • Question 2
    1 / -0
    The value of ‘b’ for which u(x, y) = ebx cos 5y is harmonic
    Solution

    Concept:

    If u(x, y) is harmonic function, then it satisfies Laplace’s equation uxx + uyy = 0

    Calculation:

    b2 ebx cos 5y – 25 ebx cos 5y = 0

    ebx cos 5y (b2 - 25) = 0

    b2 – 25 = 0

    ∴ b = ± 5

  • Question 3
    1 / -0
    If the function defined by f(z) = (x2 + axy + by2) + i(cx2 + dxy + y2) is analytic, then (a + b + c + d) = ______
    Solution

    Explanation:

    Given:

    u = x2 + axy + by2 and v = cx2 + dxy + y2

    ux = 2x + ay, -vx = -2cx – dy

    uy = ax + 2by, vy = dx + 2y

    Now,

    C-R equations must be satisfied

    ux = vy & uy = -vx

    ⇒ d = 2, a = 2 a = -2c  2b = -d

    c = -1 b = -1

    ∴ a = d = 2 & b = c = -1

    ∴ a + b + c + d = 2 + (-1) + (-1) + 2

    ∴ a + b + c + d = 2
  • Question 4
    1 / -0
    The Taylor series expansion of 3 sin x + 2 cos x is
    Solution

    Concept:

    Taylor series expansion for sin x and cos x are respectively:

    \(\sin x = x - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \frac{{{x^7}}}{{7!}} + \ldots - \infty < x < \infty \)

    \(\cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \ldots - \infty < x < \infty \)

    Calculation:

    \(3\sin x = 3x - \frac{{3{x^3}}}{{3!}} + \frac{{3{x^5}}}{{5!}} + \ldots \)

    \(3\sin x = 3x - \frac{{{x^3}}}{{2!}} + \frac{{{x^5}}}{{40}} - \ldots \)          ---(1)

    Similarly,

    \(2\cos x = 2 - \frac{{2{x^2}}}{{2!}} + \frac{{2{x^4}}}{{4!}} - \frac{{2{x^6}}}{{6!}} + \ldots \)

     \(2\cos x = 2 - {x^2} + \frac{{{x^4}}}{{12}} - \ldots \)        ---(2)

    Adding equation (1) and equation (2), we get:

    \(3\sin x + \cos x = 2 + 3x - {x^2} - \frac{{{x^3}}}{2} + \ldots \)

  • Question 5
    1 / -0

    Let f(z) = (x2 + y2) + i2xy and g(z) = 2xy + i(y2 – x2) for z = x + iy ϵ C. Then, in the complex plane C.

    Solution

    Explanation:

    Given:

    f(z) = (x2 + y2) + i 2xy

    g(z) = 2xy + i (y2 – x2)

    To check analyticity of a function, we need to check CR equations.

    ux = vy, uy = - vx

    f(z) = (x2 + y2) + i 2xy

    u = x2 + y2, v = 2xy

    ux = 2x

    uy = 2y

    vx = 2y

    vy = 2x

    ux = vy but uy ≠ -vx

    Hence, f(z) is not analytic

    g(z) = 2xy + i (y2 – x2)

    u = 2xy, v = y2 – x2

    ux = 2y

    uy = 2x

    vx = -2x

    vy = 2y

    ux = vy and uy = -vx

    Hence g(z) is analytic.

  • Question 6
    1 / -0
    A complex function f(z) = u (x, y) + i v (x, y) and its complex conjugate f*(z) = u(x, y) – i v(x, y) are both analytic in the entire complex plane, where z = x + i y and \({\rm{i}} = \sqrt { - 1}\). The function f is then given by
    Solution

    Explanation:

    f(z) = u(x, y) + i v(x, y)

    f*(z) = u (x, y) - i v(x, y)

    f(z) is analytic function

    ⇒ ux = vy and uy = - vx

    \(\Rightarrow \frac{{\partial u}}{{\partial x}} = \frac{{\partial v}}{{\partial y}}and\frac{{\partial u}}{{\partial y}} = - \frac{{\partial v}}{{\partial x}}\)       ----(1)

    f*(z) is analytic function

    \(\Rightarrow \frac{{\partial u}}{{\partial x}} = - \frac{{\partial v}}{{\partial y}}and\frac{{\partial u}}{{\partial y}} = \frac{{\partial v}}{{\partial x}}\)       ----(2)

    From (1) and (2)

    \(\Rightarrow \frac{{\partial u}}{{\partial x}} = - \frac{{\partial u}}{{\partial x}}\) ⇒ u is constant

    ⇒ v is constant

    f(z) = u + iv
  • Question 7
    1 / -0
    The value of the integral \(\mathop \smallint \nolimits_c \frac{{dx}}{{{z^2} + 9}}\) where c is the circle |z - 3i| = 4 is
    Solution

    Explanation:

    Let \(f\left( z \right) = \frac{1}{{{z^2} + 9}}\) 

    ⇒ z = 3i, -3i are singular points

    The singular point 3i lies inside and the singular point -3i lies outside the circle |z - 3i| = 4

    \(\mathop \smallint \nolimits_c \frac{{dz}}{{\left( {{z^2} + 9} \right)}} = \mathop \smallint \nolimits_c \frac{{dz}}{{\left( {z + 3i} \right)\left( {z - 3i} \right)}}\)

    \( = \mathop \smallint \nolimits_c \frac{{\left( {\frac{1}{{z + 3i}}} \right)}}{{\left( {z - 3i} \right)}}dz\)

    \( = \mathop \smallint \nolimits_c \frac{{f\left( z \right)}}{{\left( {z - {z_0}} \right)}}dz\)

    = 2π f(3i) where

    \(f\left( z \right) = \frac{1}{{z + 3i}}\)

    Now,

    By Cauchy’s integral formula”

    \(f\left( z \right) = 2\pi i \times \frac{1}{{3i + 3i}}\)

    \(\therefore f\left( z \right) = \frac{\pi }{3}\)

  • Question 8
    1 / -0
    In the Laurent expansion of \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}}\) valid in the region 1 < |z| < 2, the co-efficient of \(\frac{1}{{{z^2}}}\) is
    Solution

    Concept:

    Laurent series f(z) is given by

    \(f\left( z \right) = \mathop \sum \limits_{n = - 1}^\infty {a_n}{z^n}\)

    \( = \frac{{a - 1}}{z} + {a_0} + {a_1}z + {a_2}{z^2} + {a_3}{z^3} + \ldots \)

    Calculation:

    Given:

    \(f\left( z \right) = \frac{1}{{\left( {z - 1} \right)\left( {z - 2} \right)}} = \frac{1}{{z - 2}} - \frac{1}{{z - 1}}\)

    The given region is 1 < |z| < 2

    \(1 < \left| z \right| \Rightarrow \frac{1}{{\left| z \right|}} < 1\)

    \(\left| z \right| < 2 \Rightarrow \frac{{\left| z \right|}}{2} < 1\;\)

    \( \Rightarrow f\left( z \right) = \frac{1}{{2\left( {\frac{z}{2} - 1} \right)}} - \frac{1}{{z\left( {1 - \frac{1}{z}} \right)}}\)

    \( = \frac{{ - 1}}{{2\left( {1 - \frac{z}{2}} \right)}} - \frac{1}{{z\left( {1 - \frac{1}{z}} \right)}}\)

    \( = \frac{{ - 1}}{2}{\left( {1 - \frac{z}{2}} \right)^{ - 1}} - \frac{1}{z}{\left( {1 - \frac{1}{z}} \right)^{ - 1}}\)

    \( = \frac{{ - 1}}{2}\left[ {1 + \frac{z}{2} + {{\left( {\frac{z}{2}} \right)}^2} + \ldots } \right] - \frac{1}{z}\left[ {1 + \frac{1}{z} + {{\left( {\frac{1}{z}} \right)}^2} + \ldots } \right]\)

    \( = \left[ {\frac{{ - 1}}{2} - \frac{z}{4} - \frac{{{z^2}}}{8} + \ldots } \right] - \left[ {\frac{1}{z} + \frac{1}{{{z^2}}} + \frac{1}{{{z^3}}} + \ldots } \right]\)

    Co-efficient of \(\frac{1}{{{z^2}}}\;\)is -1

  • Question 9
    1 / -0
    If u(x, y) = ex (x cos y – y sin y) then f(z) is
    Solution

    Explanation:

    Given:

    u(x, y) = x ex cos y - ex y sin y

    ux = (x + 1) ex cos y - ex y sin y

    And uy = -x ex sin y - ex (y cos y + sin y)

    Consider

    f’(z) = ux - iuy

    ⇒ f’(z) = [(x + 1) ex cos y - ex y sin y] – i[-x ex sin y - ex (y cos y + sin y)]

    Put x = z and y = 0 in the above equation.

    We get

    f’(z) = (z + 1) ez – i[(0 - ez (0 + sin 0)]

    ∴ f’(z) = (z + 1) ez

    Now,

    Integrating both sides, we get

    ∴ f(z) = zez + c

  • Question 10
    1 / -0
    The conjugate harmonic function v(x, y) of u(x, y) = In (x2 + y2) is
    Solution

    Concept:

    Let the real part u(x, y) of an analytic function f(z) = u + iv be given

    To find the function v(x, y),

    The total derivative of V is given by

    \(dv = \frac{{\partial v}}{{\partial x}}dx + \frac{{\partial v}}{{\partial y}}dy\) 

    By using CR equations, ux = vx and uy = -vx

    \(dv = \frac{{ - \partial u}}{{\partial y}}dx + \frac{{\partial u}}{{\partial x}}dy\) 

    The R.H.S of the above equation is in the form of Mdx + Ndy where

    \(M = \frac{{ - \partial u}}{{\partial y}}\)  and \(N = \frac{{\partial u}}{{\partial x}}\) 

    Since u is harmonic, it satisfies Laplace equation

    \(\frac{{\partial M}}{{\partial y}} = \frac{{ - {\partial ^2}u}}{{\partial {y^2}}}\) and \(\frac{{\partial N}}{{\partial x}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}}\) 

    \(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} = 0\) 

    \( \Rightarrow \frac{{\partial M}}{{\partial y}} = \frac{{\partial N}}{{\partial x}}\) 

    Hence the equation is on the exact equation.

    Now, by integrating we get

    \(v = \smallint - {u_y}dx\; + \smallint {u_x}\;dy + C\) 

    Similarly when v(x, y) is given, then to find u(x, y)

    \(u = \smallint {v_y}\;dx - \smallint {v_x}dy + C\) 

    Calculation:

    Given that, (x, y) = In (x2 + y2)

    \({u_x} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}},\;\;{u_y} = \frac{{2y}}{{\left( {{x^2} + {y^2}} \right)}}\) 

    From CR equation,

    \({u_x} = {u_y} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}}\) 

    By integrating on both the sides,

    \(v = \smallint \frac{{2x}}{{{x^2} + {y^2}}}dy\) 

    \( \Rightarrow v = 2{\tan ^{ - 1}}\left( {\frac{y}{x}} \right) + g\left( x \right)\) 

    By differentiating w.r.t. ‘x’

    \( \Rightarrow {v_x} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\) 

    \( \Rightarrow \; - {u_y} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\) 

    \( \Rightarrow \frac{{ - 2y}}{{{x^2} + {y^2}}} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\) 

    g’(x) = 0

    g(x) = C

    \(v\left( {x,\;y} \right) = 2{\tan ^{ - 1}}\left( {\frac{y}{x}} \right) + C\;\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now