Concept:
Let the real part u(x, y) of an analytic function f(z) = u + iv be given
To find the function v(x, y),
The total derivative of V is given by
\(dv = \frac{{\partial v}}{{\partial x}}dx + \frac{{\partial v}}{{\partial y}}dy\)
By using CR equations, ux = vx and uy = -vx
\(dv = \frac{{ - \partial u}}{{\partial y}}dx + \frac{{\partial u}}{{\partial x}}dy\)
The R.H.S of the above equation is in the form of Mdx + Ndy where
\(M = \frac{{ - \partial u}}{{\partial y}}\) and \(N = \frac{{\partial u}}{{\partial x}}\)
Since u is harmonic, it satisfies Laplace equation
\(\frac{{\partial M}}{{\partial y}} = \frac{{ - {\partial ^2}u}}{{\partial {y^2}}}\) and \(\frac{{\partial N}}{{\partial x}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}}\)
\(\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}} = 0\)
\( \Rightarrow \frac{{\partial M}}{{\partial y}} = \frac{{\partial N}}{{\partial x}}\)
Hence the equation is on the exact equation.
Now, by integrating we get
\(v = \smallint - {u_y}dx\; + \smallint {u_x}\;dy + C\)
Similarly when v(x, y) is given, then to find u(x, y)
\(u = \smallint {v_y}\;dx - \smallint {v_x}dy + C\)
Calculation:
Given that, (x, y) = In (x2 + y2)
\({u_x} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}},\;\;{u_y} = \frac{{2y}}{{\left( {{x^2} + {y^2}} \right)}}\)
From CR equation,
\({u_x} = {u_y} = \frac{{2x}}{{\left( {{x^2} + {y^2}} \right)}}\)
By integrating on both the sides,
\(v = \smallint \frac{{2x}}{{{x^2} + {y^2}}}dy\)
\( \Rightarrow v = 2{\tan ^{ - 1}}\left( {\frac{y}{x}} \right) + g\left( x \right)\)
By differentiating w.r.t. ‘x’
\( \Rightarrow {v_x} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\)
\( \Rightarrow \; - {u_y} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\)
\( \Rightarrow \frac{{ - 2y}}{{{x^2} + {y^2}}} = \frac{{ - 2y}}{{{x^2} + {y^2}}} + g'\left( x \right)\)
⇒ g’(x) = 0
⇒ g(x) = C
\(v\left( {x,\;y} \right) = 2{\tan ^{ - 1}}\left( {\frac{y}{x}} \right) + C\;\)