Concept:
For castings having same length and cross-sectional area, the volume of the casting will be same for both.
The Chvorinov’s rule for solidification time is:
\(t=C{{\left( \frac{V}{A} \right)}^{2}}\)
where C is a constant and V, A are the volume and surface area respectively.
Calculation:
For the rectangular casting, width/thickness = \(\frac{{\rm{b}}}{{\rm{t}}} = 3\)
Since both have the same cross-sectional area:
\(3{{\rm{t}}^2} = \frac{{\rm{\pi }}}{4}{{\rm{d}}^2}{\rm{}}\)
\(3{{\rm{t}}^2} = \frac{{\rm{\pi }}}{4} \times {0.3^2}\)
\(\therefore {\rm{t}} = 0.1534~{\rm{m}}\)
Dimension of rectangular casting: Thickness (t) = 0.1534 mm, Width (b) = 3t = 0.4602 mm, L = 0.5 mm
The surface area of the rectangular casting will be:
Arect = 2(0.5 × 0.1534 + 0.4602 × 0.1534 + 0.4602 × 0.5) = 0.7548 m2
Surface area of the round casting:
\({{A}_{round}}=2\pi {{r}^{2}}+2\pi rl=2\pi {{\left( 0.15 \right)}^{2}}+2\pi \left( 0.15 \right)\times 0.5=0.6126~{{m}^{2}}\)
Thus, for same volume of the castings, using Chvorinov’s rule:
\(t=C{{\left( \frac{V}{A} \right)}^{2}}\Rightarrow t\propto {{\left( \frac{1}{A} \right)}^{2}}\)
\(\frac{{{t}_{rect}}}{{{t}_{round}}}={{\left( \frac{{{A}_{round}}}{{{A}_{rect}}} \right)}^{2}}={{\left( \frac{0.6126}{0.7547} \right)}^{2}}=0.6588\)