Concept:
Natural frequency:
\({\omega _n} = \sqrt {\frac{k}{m}}\)
Damping ratio:
\(\xi = \frac{c}{{{c_c}}} = \frac{c}{{2\sqrt {km} }} = \frac{c}{{2m{\omega _n}}}\)
Damped natural frequency, \({\omega _d} = {\omega _n}\sqrt {1 - {\xi ^2}}\)
FT is the force transmitted to the foundation. The disturbing force is F. The ratio of FT to F is called transmissibility.
\(T.R = \frac{{{F_T}}}{F} = \frac{{\sqrt {1 + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
The steady-state amplitude for the system:
\(A = \frac{{\frac{F}{k}}}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
Calculation
Given m = 200 kg, k = 35 kN/m = 35000 N/m, F = 100 N, C = 200 N.sec/m
\({\omega _n} = \sqrt {\frac{k}{m}} = \sqrt {\frac{{35000}}{{200}}} = 13.228\;rad/s\)
\(\xi = \frac{C}{{2\sqrt {km} }} = \frac{{200}}{{2\sqrt {35000 \times 200} }} = 0.038\)
\({\omega _d} = {\omega _n}\sqrt {1 - {\xi ^2}}\)
\({\omega _d} = 13.288\sqrt {1 - {{\left( {0.038} \right)}^2}} = 13.218\; rad/s\)
The amplitude of force vibration (A) :
\(A = \frac{{\frac{F}{k}}}{{\sqrt {{{\left[ {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right]}^2} + {{\left[ {2\xi \left( {\frac{\omega }{{{\omega _n}}}} \right)} \right]}^2}} }}\)
Here the disturbing force is acting on the mass at an undamped natural frequency so ω = ωn
ω/ωn = 1
\(A = \frac{{\frac{F}{k}}}{{2\xi }} = \frac{{\frac{{100}}{{35000}}}}{{2 \times 0.038}} = 0.03759\;m\)
A = 37.59 mm