Self Studies

Mathematics Test - 10

Result Self Studies

Mathematics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Two equal and opposite direction forces \(f\) acting, and then value resulting force will be:

    Solution

    Two equal and opposite direction forces \(f\) acting, and then value resulting force will be zero.

    • Equal forces acting in opposite directions are called balanced forces.
    • Balanced forces acting on an object will not change the object’s motion.
    • When you add equal forces in opposite directions, the net force is zero.
  • Question 2
    4 / -1

    Force \(F\) in the given figure equals:

    Solution

    Given,

    \(A = 1\) kN

    \(B = 1\) kN

    By Lami's Theorem

    \(\frac{A}{\sin \alpha}=\frac{B}{\sin \beta}=\frac{C}{\sin \gamma}\)

    where \(A, B, C\) are the magnitudes of the three coplanar, concurrent and non-collinear vectors, and \(α, β, γ\) is the respective angle between them.

    \(\frac{F}{\sin 60^{\circ}}=\frac{1}{\sin (90+60)^{\circ}}=\frac{1}{\sin (90+60)^{\circ}}\)

    \(F=\frac{\sin 60^{\circ}}{\sin (90+60)^{\circ}}=1.73\) kN

  • Question 3
    4 / -1

    A rigid ball of weight \(100 N\) is suspended with the help of a string. The ball is pulled by a horizontal force F such that the string makes an angle of \(30^{\circ}\) with the vertical. The magnitude of force \(F\) is:

    Solution

    According to Lami's Theorem:

    \(\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma}\)

    Also,

    \(\frac{T_{Q R}}{\sin (180-\alpha)^{\circ}}=\frac{W}{\sin (\beta+\alpha)^{\circ}}=\frac{T _{PR}}{\sin (180-\beta)^{\circ}}\)

    \(\sin \left(180^{\circ}-\theta\right)=\sin \theta\)

    Let \(T\) be tension is spring.

    Applying Lami’s Theorem,

    \(\frac{T}{\sin 90^{\circ}}=\frac{100}{\sin 120^{\circ}}=\frac{F}{\sin 150^{\circ}}\)

    \(F=\frac{100 \sin 150^{\circ}}{\sin 120^{\circ}}\)

    \(F=57.73 \mathrm{~N}\)

  • Question 4
    4 / -1

    If A = { x : x ∈ N,  0 < x < 6} and B = {x : x is a prime natural number, 0 < x < 10} Find A - B ?

    Solution

    Given:

    A = { x : x ∈ N, 0 < x < 6}

    B = {x : x is a prime natural number, 0 < x < 10}

    A = { x : x ∈ N, 0 < x < 6}

    A = {1, 2, 3, 4, 5}

    B = {x : x is a prime natural number, 0 < x < 10}

    B = {2, 3, 5, 7}

    A - B = {1, 2, 3, 4, 5} - {2, 3, 5, 7}

    = {1, 4}

    ∴ The value A - B is {1, 4}.

  • Question 5
    4 / -1

    If there are 76 persons in a party and if they shake hands with each other, how many handshakes are possible

    Solution

    We have to select 2 persons out of 76 for handshakes.

    \(\therefore\) Number of handshakes \(={ }^{76} \mathrm{C}_{2}=\frac{76 \times 75}{2 \times 1}\)

    = 38 × 75

    = 2850

  • Question 6
    4 / -1

    An aircraft executes a horizontal loop of radius \(1 \mathrm{~km}\) with a steady speed of \(900 \mathrm{~km/h}\). Compare and find the ratio of its centripetal acceleration with the acceleration due to gravity.

    Solution

    Given,

    Radius of the loop, \((r)=1 \mathrm{~km}=1000 \mathrm{~m}\)

    Speed of the aircraft, \((v)=900 \mathrm{~km} / \mathrm{h}\)

    \(v=900 \times \frac{5}{18} \)

    \(v=250 \mathrm{~m/s}\)

    Centripetal acceleration \(\mathrm (a_{c})=\frac{\mathrm v^{2}}{r}\)

    \(=\frac{(250)^{2}}{1000}\)

    \(=\frac{250 \times 250}{1000}=62.5 \mathrm{~m/s}^{2}\)

    Acceleration due to gravity, \((\mathrm{g})=9.8 \mathrm{~m/s}^{2}\)

    So the ratio:

    \(\frac{\mathrm{a}_{\mathrm{c}}}{\mathrm{g}}=\frac{62.5}{9.8}=6.38 \approx 6.4\)

    So the ratio of its centripetal acceleration with the acceleration due to gravity is \(6.4\).

  • Question 7
    4 / -1

    Middle term in the expansion \(\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{11}\) is

    Solution

    The general term in the expansion of \(\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{11}\) is given by,

    \(\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r}} \times{ }^{11} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{11-\mathrm{r}} \times\left(\frac{1}{\mathrm{x}}\right)^{\mathrm{r}}\)

    \(=(-1)^{\mathrm{r}} \times{ }^{11} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{11-\mathrm{r}} \times \mathrm{x}^{-\mathrm{r}}\)

    \(=(-1)^{\mathrm{r}} \times{ }^{11} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{11-2 \mathrm{r}}\)

    Here, n is 11 (i.e., odd), so there will be two middle terms

    \(\frac{1}{2}(\mathrm{n}+1)\) th term \(=6\) th term and \(\frac{1}{2}(\mathrm{n}+3)\) th term \(=7\) th term

    \(\therefore \mathrm{T}_{6}=\mathrm{T}_{5+1}=(-1)^{5} \times{ }^{11} \mathrm{C}_{5} \times \mathrm{x}^{11-10}\)

    \(=-\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} \times \mathrm{x}\)

    = -462 x

    And, \(\mathrm{T}_{7}=\mathrm{T}_{6+1}=(-1)^{6} \times{ }^{11} \mathrm{C}_{6} \times \mathrm{x}^{11-12}\)

    \(=\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2 \times 1} \times \mathrm{x}^{-1}\)

    \(= \frac{462}{x}\)

  • Question 8
    4 / -1

    Mean of marks of a class, having 40 students, in a subject are 70. If marks of a student were mistakenly read as 87 instead of 78, then what is the actual mean marks?

    Solution

    Let the sum of the marks of the rest of the students be \(x\).

    Incorrect Mean \(=70\)

    \(\frac{x+87}{40}=70\)

    \(x+87=2800\)

    \(x=2713\)

    Correct sum \(=x+\) correct marks

    \(S=2713+78=2791\)

    Correct Mean \(=\frac{2791}{40}=69.775\)

  • Question 9
    4 / -1

    What is the most probable number of successes in 10 trials with probability of success \(\frac{2}{3}\)?

    Solution

    Given, probability of success \(\frac{2}{3}\) and number of trials is 10.

    Consider, the most probable number of successes in 10 trials with probability of success \(\frac{2}{3}\) is n.

    Now, \(\mathrm{n}=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\ldots\) ( 10 times)

    \(\mathrm{n}=\frac{2}{3} \times 10\)

    \(\Rightarrow \mathrm{n}=6.67\)

    \(\Rightarrow \mathrm{n}=7\)

    The most probable number of successes in 10 trials with probability of success \(\frac{2}{3}\) is 7.

  • Question 10
    4 / -1

    The polar coordinates of the vertices of a triangle are \((0,0),\left(3, \frac{\pi}{2}\right)\) and \(\left(3, \frac{\pi}{6}\right)\). Then, the triangle is:

    Solution

    We have been given the polar coordinates of the vertices of a triangle are \((0,0),\left(3, \frac{\pi}{2}\right)\) and \(\left(3, \frac{\pi}{6}\right)\).

    Let us suppose a \(\Delta A B C\) where \(A(0,0), B\left(3, \frac{\pi}{2}\right)\) and \(C\left(3, \frac{\pi}{6}\right)\).

    We know that in Cartesian form the polar coordinates \((r, \theta)\) is written as:

    \(x\) coordinates \(=r \cos \theta\)

    \(y\) coordinates \(=r \sin \theta\)

    \(B\left(3, \frac{\pi}{2}\right)\)

    \(x\) coordinates \(=3 \cos \frac{\pi}{2}=3 \times 0=0\)

    \(y\) coordinates \(=3 \sin \frac{\pi}{2}=3 \times 1=3\)

    \(C\left(3, \frac{\pi}{6}\right)\)

    \(x\) coordinates \(=3 \cos \frac{\pi}{6}=3 \times \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{2}\)

    \(y\) coordinates \(=3 \sin \frac{\pi}{6}=3 \times \frac{1}{2}=\frac{3}{2}\)

    We know that distance between two points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is given by,

    \(D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)

    We have \(A(0,0)\) and \(B(0,3)\)

    \(\Rightarrow A B=\sqrt{(0-0)^{2}+(3-0)^{2}}\)

    \(=\sqrt{0+9}\)

    \(=3\)

    Also, we have \(A(0,0)\) and \(C\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\)

    \(\Rightarrow A C=\sqrt{\left(\frac{3 \sqrt{3}}{2}-0\right)^{2}+\left(\frac{3}{2}-0\right)^{2}}\)

    \(=\sqrt{\frac{27}{4}+\frac{9}{4}}\)

    \(=\sqrt{\frac{36}{4}}\)

    \(=\frac{6}{2}\)

    \(=3\)

    Again, we have \(B(0,3)\) and \(C\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\) \(\Rightarrow B C=\sqrt{\left(\frac{3 \sqrt{3}}{2}-0\right)^{2}+\left(\frac{3}{2}-3\right)^{2}}\)

    \(=\sqrt{\frac{27}{4}+\left(\frac{-3}{2}\right)^{2}}\)

    \(=\sqrt{\frac{27}{4}+\frac{9}{4}}\)

    \(=\sqrt{\frac{36}{4}}\)

    \(=\frac{6}{2}\)

    \(=3\)

    So, we get \(A B=B C=A C=3\) unit.

    We know that if a triangle has all its sides equal then it must be an equilateral triangle.

    Thus, \(\mathrm{ABC}\) is an equilateral triangle.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now