We have been given the polar coordinates of the vertices of a triangle are \((0,0),\left(3, \frac{\pi}{2}\right)\) and \(\left(3, \frac{\pi}{6}\right)\).
Let us suppose a \(\Delta A B C\) where \(A(0,0), B\left(3, \frac{\pi}{2}\right)\) and \(C\left(3, \frac{\pi}{6}\right)\).
We know that in Cartesian form the polar coordinates \((r, \theta)\) is written as:
\(x\) coordinates \(=r \cos \theta\)
\(y\) coordinates \(=r \sin \theta\)
\(B\left(3, \frac{\pi}{2}\right)\)
\(x\) coordinates \(=3 \cos \frac{\pi}{2}=3 \times 0=0\)
\(y\) coordinates \(=3 \sin \frac{\pi}{2}=3 \times 1=3\)
\(C\left(3, \frac{\pi}{6}\right)\)
\(x\) coordinates \(=3 \cos \frac{\pi}{6}=3 \times \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{2}\)
\(y\) coordinates \(=3 \sin \frac{\pi}{6}=3 \times \frac{1}{2}=\frac{3}{2}\)

We know that distance between two points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\) is given by,
\(D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\)
We have \(A(0,0)\) and \(B(0,3)\)
\(\Rightarrow A B=\sqrt{(0-0)^{2}+(3-0)^{2}}\)
\(=\sqrt{0+9}\)
\(=3\)
Also, we have \(A(0,0)\) and \(C\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\)
\(\Rightarrow A C=\sqrt{\left(\frac{3 \sqrt{3}}{2}-0\right)^{2}+\left(\frac{3}{2}-0\right)^{2}}\)
\(=\sqrt{\frac{27}{4}+\frac{9}{4}}\)
\(=\sqrt{\frac{36}{4}}\)
\(=\frac{6}{2}\)
\(=3\)
Again, we have \(B(0,3)\) and \(C\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)\) \(\Rightarrow B C=\sqrt{\left(\frac{3 \sqrt{3}}{2}-0\right)^{2}+\left(\frac{3}{2}-3\right)^{2}}\)
\(=\sqrt{\frac{27}{4}+\left(\frac{-3}{2}\right)^{2}}\)
\(=\sqrt{\frac{27}{4}+\frac{9}{4}}\)
\(=\sqrt{\frac{36}{4}}\)
\(=\frac{6}{2}\)
\(=3\)
So, we get \(A B=B C=A C=3\) unit.
We know that if a triangle has all its sides equal then it must be an equilateral triangle.
Thus, \(\mathrm{ABC}\) is an equilateral triangle.