Self Studies

Function Test - 5

Result Self Studies

Function Test - 5
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Let f : R → R be a periodic function such that 
    f ( T + x) = 1 + [ 1 - 3f (x) + 3f (x) + 3 ( f (x) )2 - ( f (x) 3 ]1/3 where T is a fixed Positive number , then find the period of f (x).

    Solution

    f (T + x) = 1 + [ 1 - f (x) }3 ]1/3

    = 1 + (1 - f (x) ) 

    ⇒ f (T + x) + f (x) = 2 .......... (1) 

    ⇒ f (2T + x) + f (T + x) = 2 ....... (2) 

    Using (2) - (1) 

    ⇒ f (2T + x) - f (x) = 0 

    ⇒ f (2T + x) = f (x) 

    Also T is positive and least therefore period of f(x) =2T

     

  • Question 2
    1 / -0

    Directions For Questions

    Let f (x)  and g (x)  are two distinct continues functions such that f (x)  is an  odd function and g (x)  is an even function ∀ x ∈ R and f ' (x) > g ' (x)  ∀ x ∈ R. If a function h (x)   = f (x) + g (x)  is an odd function and

     φ (x)   =  f (g (x) )   +  g (f (x) )

    then,

    ...view full instructions

    Function g (x)  is

    Solution

    Since h ( - x)   =   - h (x)  

    f ( - x)  + g ( - x)  =  - f (x)  - g (x)   (... f is odd and g is even) 

    ...  2g (x)  =  0 

    ⇒ g (x)  =  0 ∀x∈  R

     ⇒ g (x)  is zero function which is constant function.

    The correct answer is: a constant function

  • Question 3
    1 / -0

    Directions For Questions

    Let f (x)  and g (x)  are two distinct continues functions such that f (x)  is an  odd function and g (x)  is an even function ∀ x ∈ R and f ' (x) > g ' (x)  ∀ x ∈ R. If a function h (x)   = f (x) + g (x)  is an odd function and

     φ (x)   =  f (g (x) )   +  g (f (x) )

    then,

    ...view full instructions

    Find the number of solutions of f (x)  =  g (x).

    Solution

    g (x)  =  0 ⇒ g' (x)   =  0 ∀ x 

    So , f '(x)  > 0 ∀ x ∈ R

    ⇒ f is increasing function and f is odd.

    Let f (x)  > 0 for some x  (without loss of generality) 

    f ( - x)   =  - f (x)  < 0 for that x 

    Since f (x)  and f ( - x)  take opposite signs and f is increasing 

    ⇒ f is zero at only one point 

    ... f (x)   = g (x)  

    ⇒ f (x)   =  0 

    ⇒ x  =  0

    such that f (0)   =  0  (... f ( - x) = - f (x) takes x  = 0 then f (0) =  f (0)       

    ⇒ f (0)  =  0 

    ... f (x)   =  g (x)  has only one solution

    The correct answer is: 1

  • Question 4
    1 / -0

    Directions For Questions

    Let f (x)  and g (x)  are two distinct continues functions such that f (x)  is an  odd function and g (x)  is an even function ∀ x ∈ R and f ' (x) > g ' (x)  ∀ x ∈ R. If a function h (x)   = f (x) + g (x)  is an odd function and

     φ (x)   =  f (g (x) )   +  g (f (x) )

    then,

    ...view full instructions

     Find the number of solutions j (x)  = h (x)

    Solution

    The number of solutions of ∅ (x)  = h (x)  is 

     ∅ (x)  =  f (g (x) )  + g (f (x) ) 

     =  f (0)  +  0   (... g (x)   =  0 ∀ x ∈ R

    ⇒ ∅ (x)   =  0 and h (x)   =  f (x)  

     ... ∅ (x)  =  h (x)   = > 0  =  f (x)  

    ⇒ f takes 0 at x  =  0

    ... equation has only one solution

    The correct answer is: 1

  • Question 5
    1 / -0

    If f ( 2x + 3y, 2x - 7y ) = 20 x ,then f (x, y) will be equal to

    Solution

    7 (2x + 3y) + 3 (2x - 7y) = 20x

    ... f (2x + 3y, 2x - 7y) = 20x 

    ⇒ f (x, y) = 7x + 3y

    The correct answer is: 7x + 3y

  • Question 6
    1 / -0

    Let f : R→ R and g : R→ R be two one - one and onto function such 

    that they are the mirror images of each other about the line y = a.

    if h (x) = f (x) + g (x) ,then the function h(x) is

    Solution

    Since f (x) and g (x) are mirror images of each other about 
    the line y = a, 

    f (x) and g (x) are at equal distances from the line y = a .

    Let for some particular x0

    f (x0) = a + k ,then g (x0) = a - k ,then 

    h (x0) = f (x0) + g (x0) = 2a 

    ... h (x) = 2a ∀ x ∈ R. So, h(x) must be a constant function,

    Which is many-one into 

    The correct answer is: many – one into

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now