Self Studies

Mathematics Test-16

Result Self Studies

Mathematics Test-16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Integrate the function: \(\frac{1}{x-\sqrt{x}}\)

    Solution

    Given:

    Simplify the given function.

    \(\frac{1}{x-\sqrt{x}}\)

    \(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}\)

    \(\sqrt{x}-1=t\)

    Differentiating both sides with respect to \(x\)

    \(\frac{1}{2} \cdot x^{\frac{1}{2}-1}-0=\frac{d t}{d x}\)

    \(\left[\therefore\left(x^{n}\right)^{\prime}=n x^{n-1}\right]\)

    \(\frac{1}{2} \cdot x^{-\frac{1}{2}} =\frac{d t}{d x}\)

    \(d x =\frac{2 d t}{x^{-\frac{1}{2}}}\)

    \(d x =2 \sqrt{x} d t\)

    Integrating the function

    \(\int \frac{1}{x-\sqrt{x}} \cdot d x\)

    \(=\int \frac{1}{\sqrt{x}(\sqrt{x}-1)} \cdot d x\)

    putting \(t=\sqrt{x}-1\) and \(d x=2 \sqrt{x} d t\)

    \(=\int \frac{1}{\sqrt{x}(t)} \cdot 2 \sqrt{x} \cdot d x\)

    \(=\int \frac{2}{t} \cdot d t\)

    \(=2 \int \frac{1}{t} \cdot d t\)

    \(=2 \log |t|+C\)

    \([\because\) \(\int \frac{1}{x} \cdot d x=\log |x|\)\(]\)

    \(=2 \log |\sqrt{x}-1|+C\)

    \([\because\) \(t=\sqrt{x}-1]\)

  • Question 2
    4 / -1

    Find angle ' \(\theta\) ' between the vectors \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\) and \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\).

    Solution

    Given:

    \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\)

    \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\)

    We know that

    \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\)

    where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\)

    Finding \(|\vec{a}|,|\vec{b}|\) and \(\vec{a} \cdot \vec{b}\)

    Magnitude of \(\vec{a}=\sqrt{1^2+1^2+(-1)^2}\)

    \(|\vec{a}|=\sqrt{1+1+1}=\sqrt{3}\)

    Magnitude of \(\vec{b}=\sqrt{1^2+(-1)^2+1^2}\)

    \(|\vec{b}|=\sqrt{1+1+1}=\sqrt{3}\)

    Finding \(\vec{a} \cdot \vec{b}\)

    \(\vec{a} \cdot \vec{b} =(1 \hat{i}+1 \hat{j}-1 \hat{k}) \cdot(1 \hat{i}-1 \hat{j}+1 \hat{k})\)

    \(=1 \cdot 1+1 \cdot(-1)+(-1) 1\)

    \(=1-1-1\)

    \(=-1\)

    Now,

    \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta\)

    Putting values

    \(-1=\sqrt{3} \times \sqrt{3} \times \cos \theta\)

    \(-1=3 \cos \theta\)

    \(\cos \theta=\frac{-1}{3}\)

    \(\theta=\cos ^{-1}\left(\frac{-1}{3}\right)\)

    Therefore, the angle between \(\vec{a}\) and \(\vec{b}\) is \(\cos ^{-1}\left(\frac{-1}{3}\right)\)

  • Question 3
    4 / -1

    If the coefficient of \(x^{7}\) in \(\left[a x^{2}+\frac{1}{b x}\right]^{11}\) equals the coefficient of \(x^{-7}\) in \(\left[a x-\left(\frac{1}{b x^{2}}\right)\right]^{11},\) then a and b satisfy the relation.

    Solution
    General term \(\mathrm{T}_{\mathrm{r}+1}\) in the expansion of \((\mathrm{a}+\mathrm{b})^{\mathrm{n}}\) is given by
    \(\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}\)
    Applying to \(\left(a x^{2}+\frac{1}{b x}\right)^{11}\)
    \(\mathrm{T}_{\mathrm{r}+1}={ }^{11} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{22-3 \mathrm{r}} \mathrm{a}^{11}(\mathrm{ab})^{-\mathrm{r}} ...........(i)\)
    Therefore \(22-3 \mathrm{r}=7\) for coefficient of \(\mathrm{x}^{7}\)
    \(\Rightarrow \mathrm{r}=5\)
    Thus, (i) reduces to
    \(\mathrm{T}_{6}={ }^{11} \mathrm{C}_{5} \mathrm{x}^{7} \mathrm{a}^{11}(\mathrm{ab})^{-5} ............(ii)\)
    Similarly applying to \(\left(a x-\frac{1}{b x^{2}}\right)^{11},\) we get
    \(\mathrm{T}_{\mathrm{r}+1}=(-1)^{\mathrm{r} 11} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{11-3 \mathrm{r}} \mathrm{a}^{11}(\mathrm{ab})^{-\mathrm{r}}\)
    Therefore \(11-3 \mathrm{r}=-7\) for coefficient of \(\mathrm{x}^{-7}\)
    \(\Rightarrow \mathrm{r}=6\)
    Equation (ii) reduces to
    \(\mathrm{T}_{7}={ }^{11} \mathrm{C}_{6} \mathrm{x}^{-7} \mathrm{a}^{11} \mathrm{ab}^{-6}\)
    Hence applying the given condition we get
    \({ }^{11} \mathrm{C}_{6} \mathrm{a}^{11}(\mathrm{ab})^{-6}={ }^{11} \mathrm{C}_{5} \mathrm{a}^{11}(\mathrm{ab})^{-5}\) from \((\mathrm{a}, \mathrm{b})\)
    \(\mathrm{ab}=1\)
  • Question 4
    4 / -1
    \(17\) students are present in a class. In how many ways, can they be made to stand in \(2\) circles of \(8\) and \(9\) students?
    Solution

    Here, we first have to select \(9\) students from \(17\) students.

    Tip:

    SELECT \(=\) Combination \(={ }^{{n}} {C}_{{r}}=\frac{{n} !}{{r} !({n}-{r}) !}\)

    SELECT and ARRANGE \(=\) Permutation \(={ }^{{n}} {P}_{{r}}=\frac{{n} !}{({n}-{r}) !}\)

    Arrange \(9\) students in circle \(=9-1=8 !\) ways \(17-9=8\) students remain.

    Arrange remaining \(8\) students in another circle \(=8-1=7 !\) ways

    \(\therefore\) Total ways to arrange \(17\) students in \(2\) circles\(=\)\({ }^{17} {C}_{9} \times 8 ! \times 7 !\)

  • Question 5
    4 / -1

    In the given figure, \(O\) is the centre of the circle of radius \(5 \mathrm{~cm}\). If \(O M=4 \mathrm{~cm}\), find the length of \(P N\):

    Solution

    Given radius \(=5 \mathrm{~cm}\) and \(\mathrm{OM=4~cm}\)

    Now by Pythagoras Theorem,

    \(r^2=O M^2+P M^2 \)

    \(5^2=4^2+PM^2 \)

    \(25=16+PM^2 \)

    \(PM^2=25-16=9 \)

    \(\mathrm{PM}=\sqrt{9}=3\)

    Now length of chord \(\mathrm{PN}=3+3=6 \mathrm{~cm}\)\(~~~~~~\)(Since the angular bisector divides the chord into equal parts.)

  • Question 6
    4 / -1

    The degree of the differential equation:

    \(\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)\)

    Solution

    Given,

    \(\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)\)

    For the given differential equation the highest order derivative is \(2\).

    The given differential equation is not a polynomial equation because it involved a logarithmic term in its derivatives so, its degree is not defined.

  • Question 7
    4 / -1

    Suppose f : R → R is defined by \(f(x)=\frac{x^{2}}{1+x^{2}}\). What is the range of the function?

    Solution

    Let \(f(x)=\frac{x^{2}}{1+x^{2}}\)

    Clearly domain (f) =R

    Let \(y=f(x) \Rightarrow y=\frac{x^{2}}{1+x^{2}}\)

    \(\Rightarrow y+x^{2} y=x^{2} \Rightarrow x^{2}-x^{2} y=y\)

    \(\Rightarrow x^{2}(1-y)=y \Rightarrow x=\pm \sqrt{\frac{y}{1-y}}\)

    Clearly x will take real values,

    If \(\frac{y}{1-y} \geq 0 \Rightarrow \frac{y-0}{y-1} \leq 0\)

    ⇒ 0 ≤ y < 1 ⇒ y ∈ [0, 1)

  • Question 8
    4 / -1

    If cot 35° = m, then sec 55° =?

    Solution

    We know that,

    \(\sec ^{2} \theta-\tan ^{2} \theta=1\)

    \(\Rightarrow \sec ^{2} \theta=1+\tan ^{2} \theta\)

    \(\Rightarrow \sec \theta=\sqrt{\left(1+\tan ^{2} \theta\right)}\)

    Given:cot 35° = m

    Find: The value ofsec 55°

    \(\Rightarrow \sec 55^{\circ}=\sqrt{\left(1+\tan ^{2} 55^{\circ}\right)}\)

    \(\Rightarrow \sec 55^{\circ}=\sqrt{\left(1+\tan ^{2}\left(90^{\circ}-35^{\circ}\right)\right.}\)

    \(\Rightarrow \sec 55^{\circ}=\sqrt{\left(1+\cot ^{2} 35^{\circ}\right)}\)

    \(\Rightarrow \sec 55^{\circ}=\sqrt{\left(1+\mathrm{m}^{2}\right)}\)

  • Question 9
    4 / -1

    What is the value of the following determinant?

    \(\left|\begin{array}{ccc}\cos C & \tan A & 0 \\ \sin B & 0 & -\tan A \\ 0 & \sin B & \cos C \end{array}\right|\)

    Solution

    Formula used

    \(A =\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|\)

    \(\operatorname{det}( A )= a _1\left|\begin{array}{ll}b_2 & b_3 \\ c_2 & c_3\end{array}\right|- a _2\left|\begin{array}{ll}b_1 & b_3 \\ c_1 & c_3\end{array}\right|+ a _3\left|\begin{array}{ll}b_1 & b_2 \\ c_1 & c_2\end{array}\right|\)

    \(=a_1\left(b_2 c_3-b_3 c_2\right)-a_2\left(b_1 c_3-b_3 c_1\right)+a_3\left(b_1 c_2-b_2 c_1\right)\)

    Given

    \(\left|\begin{array}{ccc}\cos C & \tan A & 0 \\ \sin B & 0 & -\tan A \\ 0 & \sin B & \cos C\end{array}\right|\)

    \(=\cos C(0+\tan A \sin B)-\tan A(\sin B \cos C)\)

    \(=\tan A \sin B \cos C-\tan A \sin B \cos C\)

    \(=0\)

  • Question 10
    4 / -1

    The position vectors of the points \(A, B\) and \(C\) are respectively \(\vec{a}, \vec{b}\) and \(\vec{c}\). If \(P\) divides \(\overrightarrow{A B}\) in the ratio \(3: 4\) and \(Q\) divides \(\overrightarrow{B C}\) in the ratio \(2: 1\) both externally, then \(\overrightarrow{P Q}\) is:

    Solution

    Given:

    \(P\) divides \(\overrightarrow{A B}\) in the ratio \(3: 4\)

    \(\Rightarrow \overrightarrow{O P}=\frac{3 \overrightarrow{O B}-4 \overrightarrow{O A}}{3-4}\)

    \(=\frac{3 \vec{b}-4 \vec{a}}{-1}\)

    \(\overrightarrow{O P}=4 \vec{a}-3 \vec{b}\)

    \(Q\) divides \(\overrightarrow{B C}\) in the ratio \(2: 1\) both externally.

    \(\Rightarrow\overrightarrow{O Q}=\frac{2 \overrightarrow{O C}-\overrightarrow{O B}}{2-1}\)

    \(=2 \vec{c}-\vec{b}\)

    \(\therefore \overrightarrow{P Q}= \overrightarrow{OQ}-\overrightarrow{OP}\)

    \(=2 \vec{c}-\vec{b}-(4 \vec{a}-3 \vec{b})\)

    \(=2 \overrightarrow{ c }+2 \overrightarrow{ b }-4 \overrightarrow{ a }\)

    \(=2(\vec{c}+\vec{b}-2 \vec{a})\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now