Self Studies

Mathematics Test-2

Result Self Studies

Mathematics Test-2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    In the given circle, \(O\) is the centre and length of chord \(X Y=\) length of chord \(Z W\). If \(\angle\) \(X O Y=60^{\circ}\), then what is the measure of \(\angle Z O W\) ?

    Solution

    Given,

    \(\angle XOY=60^{\circ}\), XY = ZW

    In \(\triangle WOZ\) and \(\triangle XOY\) OZ, OW and OX, OY are radius of circle.

    \(\therefore~ \)\(\triangle WOZ\) and \(\triangle XOY\) are Congruent triangles

    Since, two Congruent triangles have all three sides and angles equal in measurement, we conclude that \(\angle ZOW=60^{\circ}\)

  • Question 2
    4 / -1

    If \(\tan \theta=\frac{1}{\sqrt{7}}\) then \(\frac{\operatorname{cosec}^{2} \theta-\sec ^2 \theta}{\operatorname{cosec}^2 \theta+\sec ^2 \theta}=\)

    Solution

    \(\tan \theta=\frac{1}{\sqrt{7}}=\frac{\text { Altitude }}{\text { Base }}\)

    By Pythagoras Theorem,

    \((\text { Hypotenuse })^2=(\text { Base })^2+(\text { Altitude })^2\)

    \(\quad \quad \quad \quad \quad\quad\quad =(\sqrt{7})^2\quad+\quad(1)^{2}\)

    \(\quad \quad \quad \quad \quad \quad \quad=7+1=8\)

    \(\therefore\) Hypotenuse \(=\sqrt{8}=2 \sqrt{2}\)

    Now, \(\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Altitude }}=\frac{2 \sqrt{2}}{1}\)

    \(\sec \theta=\frac{\text { Hypotenuse }}{\text { Base }}=\frac{2 \sqrt{2}}{\sqrt{7}}\)

    Now,

    \(\frac{\operatorname{cosec}^2 \theta-\sec ^2 \theta}{\operatorname{cosec}^2 \theta+\sec ^2 \theta}=\frac{\left(\frac{2 \sqrt{2}}{1}\right)^2-\left(\frac{2 \sqrt{2}}{\sqrt{7}}\right)^2}{\left(\frac{2 \sqrt{2}}{1}\right)^2+\left(\frac{2 \sqrt{2}}{\sqrt{7}}\right)^2}\)

    \(=\frac{8-\frac{8}{7}}{8+\frac{8}{7}}\)

    \(=\frac{\frac{56-8}{7}}{\frac{56+8}{7}}\)\(=\frac{\frac{48}{7}}{\frac{64}{7}}\)

    \(=\frac{48}{7} \times \frac{7}{64}=\frac{3}{4}\)

  • Question 3
    4 / -1

    Find the sum of the series \(3+\frac{9}{2}+6+\frac{15}{2}+\ldots\) upto \(25^{\text {th }}\) term.

    Solution

    Given,

    \(3+\frac{9}{2}+6+\frac{15}{2}+\ldots .\)

    \(d=\frac3 2\)

    \(n=25\)

    \(a=3\)

    The sum of n terms of an A.P. with first term a and common difference d is given by:

    \(\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2} \times[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]\)

    \(S_{25}=\frac{25}{2}[2 a+(25-1) \times d]\)

    \(=\frac{25}{2}\left[2 \times 3+(24) \times \frac{3}{2}\right]\)

    \(=\frac{25}{2} \times 42\)

    \(=25 \times 21\)

    \(=525\)

  • Question 4
    4 / -1

    If the latus rectum of an ellipse is equal to half of its minor axis, then its eccentricity is:

    Solution

    As we know,

    In an ellipse \(\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a >b\)

    The length of the latus rectum \(=\frac{2 b ^{2}}{ a }\)

    Its eccentricity is given by,

    \(e=\sqrt{1-\frac{b^{2}}{a^{2}}}\)

    Let the equation of the ellipse be \(\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1\) where \(a >b\).

    According to the question,

    Length of the latus rectum \(=\) Half of its minor axis

    \(\frac{2 b ^{2}}{ a }=b\)

    \(\Rightarrow \frac{2 b ^{2}}{b}=a\)

    \(\therefore a =2 b\)

    Now, the eccentricity of the ellipse \((e)=\sqrt{1-\frac{b^{2}}{a^{2}}}\)

    \(=\sqrt{1-\frac{b^{2}}{ (2b)^{2}}}\)

    \(=\sqrt{1-\frac{b^{2}}{ 4b^{2}}}\)

    \(=\sqrt{1-\frac{1}{4}}\)

    \(=\sqrt{\frac{3}{4}}\)

    \(=\frac{\sqrt{3}}{2}\)

  • Question 5
    4 / -1

    The equation of a circle with diameters are 2x - 3y + 12 = 0 and x + 4y - 5 = 0 and area of 154 sq. units is:

    Solution

    As we know,

    The standard form of the equation of a circle is \(\left( x - h \right)^{2}+\left( y - k \right)^{2}= R ^{2}\).

    Where \(\left(h, k\right)\) are the coordinates and the \(R\) is the radius of center of the circle.

    Area of the circle \(=\pi R ^{2}\)

    Given,

    Area of circle \(=154\) sq.units

    \(\Rightarrow \pi R ^{2}=154 \)

    \(\Rightarrow R ^{2}=154 \times \frac{7}{22} \)

    \(\Rightarrow R =7\)

    Equation of the diameters:

    \(2 x-3 y+12=0 \)...(i)

    \(x+4 y-5=0\)...(ii)

    Intersection of the diameters (i) - \(2 \times\) (ii), we get

    \(-11 y+22=0 \)

    \(\Rightarrow y = 2\)

    Putting the value of \(y\) in equation (i), we get

    \( 2 x -3(2)+12=0 \)

    \(\Rightarrow 2 x =6\)

    \( \Rightarrow x =- 3\)

    The center will be \(\left(-3,2\right)\).

    By the standard equation of circle

    \(\left( x - h \right)^{2}+\left( y - k \right)^{2}= R ^{2}\)

    \(\Rightarrow( x -(-3))^{2}+( y -2)^{2}=7^{2}\)

    \(\Rightarrow( x +3)^{2}+( y -2)^{2}=49\)

    \(\Rightarrow x ^{2}+9+6 x + y ^{2}+4-4 y -49=0\)

    \(\Rightarrow x ^{2}+6 x + y ^{2}-4 y - 3 6 = 0\)

  • Question 6
    4 / -1

    A dice is thrown. Find the probability of getting an even number.

    Solution

    Total number of cases \(=6(1,2,3,4,5,6)\)

    There are three even numbers \(2,4,6\)

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    Therefore probability of getting an even number is:

    \(P(\text { even })=\frac{3}{6}\)

    \(\Rightarrow P(\text { even })=\frac{1}{2}\)

  • Question 7
    4 / -1

    If \(A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]\) is symmetric, then what is \(x\) equal to:

    Solution

    \(A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]\)

    Given \(A^T=A\)

    \(\Rightarrow\left[\begin{array}{cc}4 & 2 x-3 \\ x+2 & x+1\end{array}\right]=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]\)

    Both are equal if corresponding elements are equal,

    \(\Rightarrow 2 x-3=x+2\)

    \(\Rightarrow 2 x-x=3+2\)

    \(\Rightarrow x=5\)

  • Question 8
    4 / -1

    In a parallelogram \(O A B C\), vectors \(\vec{a}, \vec{b}, \vec{c}\) are, respectively, the position vectors of vertices \(A, B, C\) with reference to \(O\) as origin. A point \(E\) is taken on the side \(BC\) which divides it in the ratio of \(2: 1\). Also, the line segment \(A E\) intersects the line bisecting the angle \(\angle A O C\) internally at point \(P\). If \(C P\) when extended meets \(A B\) in point \(F\), then the position vector of point \(P\) is:

    Solution

    Let the position vector of \(A\) and \(C\) be \(\vec{a}\) and \(\vec{c}\) respectively. Therefore, Position vector of \(B=\vec{b}=\vec{a}+\vec{c} ~~\dots\)(i)

    Also Position vector of \(E=\frac{\vec{b}+2 \vec{c}}{3}=\frac{\vec{a}+3 \vec{c}}{3}~~\dots\)(ii)

    Now point \(P\) lies on angle bisector of \(\angle AOC\). Thus,

    Position vector of point \(P=\lambda\left(\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}\right)~~\dots\)(iii)

    Also let \(P\) divides \(EA\) in ration \(\mu: 1\). Therefore,

    Position vector of \(P\)

    \(=\frac{\mu \vec{a}+\frac{\vec{a}+3 \vec{c}}{3}}{\mu+1}=\frac{(3 \mu+1) \vec{a}+3 \vec{c}}{3(\mu+1)}~~\dots\)(iv)

    Comparing (iii) and (iv), we get

    \(\lambda\left(\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{c}}{|\vec{c}|}\right)=\frac{(3 \mu+1) \vec{a}+3 \vec{c}}{3(\mu+1)}\)

    \(\Rightarrow \frac{\lambda}{|\vec{a}|}=\frac{3 \mu+1}{3(\mu+1)}\) and \(\frac{\lambda}{|\vec{c}|}=\frac{1}{\mu+1}\)

    \(\Rightarrow \frac{3|\vec{c}|-|\vec{a}|}{3|\vec{a}|}=\mu\)

    \(\Rightarrow \frac{\lambda}{|\vec{c}|}=\frac{1}{\frac{3|\vec{c}|-\vec{a}}{3|\vec{a}|}+1}\)

    \(\Rightarrow \lambda=\frac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\)

  • Question 9
    4 / -1

    If \(a_{1}, a_{2}, a_{3}\) and \(a_{4}\) are 4 consecutive terms in the expansion of \((1+x)^{n}\), then \(\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\) ?

    Solution

    Let \(a_{1}, a_{2}, a_{3}\) and \(a_{4}\) be the coefficients of 4 consecutive terms viz. the rth, \((r+1)\) th, \((r+2)\) th and \((r+3)\) th terms.

    Then, \(a_{1}={ }^{n} C_{r-1}, a_{2}=" C_{r}, a_{3}={ }^{n} C_{r+1}\) and \(a_{4}={ }^{n} C_{t-2}\). Now,

    \(\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{3}}{a_{3}+a_{4}}=\frac{1}{1+\frac{a_{2}}{a_{1}}}+\frac{1}{1+\frac{a_{4}}{a_{3}}}\)

    \(=\frac{1}{1+\frac{{ }^{n} C_{+}}{{ }^{n} C_{r-1}}}+\frac{1}{1+\frac{{ }^{n} C_{r+2}}{{ }^{n} C_{r+1}}}\)

    \(=\frac{1}{1+\frac{n-r+1}{r}}+\frac{1}{1+\frac{n-r-1}{r+2}}\)

    \(=\frac{r}{n+1}+\frac{r+2}{n+1}\)

    \(=\frac{2 \cdot(r+1)}{n+1}\)

  • Question 10
    4 / -1

    If \(\int_{0}^{a}[f(x)+f(-x)] d x=\int_{-a}^{a} g(x) d x\), then what is \(g(x)\) equal to?

    Solution

    Given:

    \(\int_{0}^{a}[f(x)+f(-x)] d x=\int_{-a}^{a} g(x) d x\),

    \(g(x)=?\)

    For an even function,

    \(f(-x)=f(x)\) and \(\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x\)

    For the given condition \(\int_{0}^{{a}}[{f}({x})+{f}(-{x})] {dx}=\int_{-{a}}^{{a}} {g}({x}) {dx}\) to be true, \({f}({x})\) and \({g}({x})\) both must be even functions, i.e.,

    \(f(x)=f(-x)\) and \(g(x)=f(x)+f(-x)\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now