Self Studies

Mathematics Test-40

Result Self Studies

Mathematics Test-40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If \(\alpha\) and \(\beta\) are the lengths of the perpendiculars from the points \((2,3,-5)\) and \((3,1,1)\) respectively from the plane \(x+2 y-2 z-9=0\), then \(\alpha\) and \(\beta\) are the roots of the equation:

    Solution

    We know that the distance between the point and the plane is given by,

    \(\left|\frac{A x_1+B y_1+C z_1-d}{\sqrt{A^2+B^2+C^2}}\right|\)

    So, the distance of the point \((2,3,-5)\) from the given plane,

    \(\alpha=\left|\frac{2 \times 1+2 \times 3+(-2) \times(-5)-9}{\sqrt{1^2+(-2)^2+(2)^2}}\right|=3\)

    Similarly, the distance of the point \((3,1,1)\) from the given plane,

    \(\beta=\left|\frac{3 \times 1+2 \times 1+(-2) \times 1-9}{\sqrt{1^2+(-2)^2+(2)^2}}\right|=2\)

    Therefore, quadratic equation with roots 3 and 2 will be,

    \((x-2)(x-3)=0\)

    \(\Rightarrow x^2-3 x-2 x+6=0\)

    \(\Rightarrow x^2-5 x+6=0\)

  • Question 2
    4 / -1

    The sum of the first 20 terms of the series \(\sqrt{5}+\sqrt{20}+\sqrt{45}+\sqrt{80}+\ldots\) is

    Solution

    The sum of the first 20 terms of the given series can be written as:

    \(\sqrt{5}+\sqrt{20}+\sqrt{45}+\sqrt{80}+\ldots\)

    \(=\sqrt{5}+2 \sqrt{5}+3 \sqrt{5}+4 \sqrt{5}+\ldots+20 \sqrt{5}\)

    \(=\sqrt{5}(1+2+\ldots+20)\)

    Sum of consecutive numbers from 1 to n:

    \(1+2+3+\ldots+\mathrm{n}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}\)

    \(=\sqrt{5} \times \frac{20 \times 21}{2}\)

    \(=210 \sqrt{5}\)

  • Question 3
    4 / -1

    A function y = f(x) has a second order derivative f''(x) = 6(x - 1).  If its graph passes through the point (2, 1) and at that point the tangent to the graph is y = 3x -5.  then the function is :

    Solution

    Given :

    A function y = f(x)  such that f''(x) = 6(x - 1)....... (A)

    The graph of f (x) passes through the point (2, 1)  at which the tangent to the graph is y = 3x - 5.

    We have to find the value of f (x). 

    We shall use the concept of tangents and normals in this question.

    From eqn (A), we have

    f'(x) = 3(x -1)2 +C ........ (i)

    At the point (2, 1) the tangent to the graph is given by

    y = 3x - 5

    Slope of tangent i.e. dydx= 3

    ⇒ f'(2) = 3

    Therefore,  f'(2) = 3(2 - 1)2 +C = 3 + C = 0.

    From equation (i), we get

    f'(x) = 3(x - 1)2

    ⇒ f'(x) = 3(x - 1)2

    ⇒ f(x) = (x - 1)3 + k ..........(ii)

    Since, graph of f(x) passes through (2, 1), therefore

    1 = (2 - 1)3 + k

    ⇒ k = 0

    Equation of funciton is

    f(x) = (x - 1)3

  • Question 4
    4 / -1

    The complex number \(\frac{1+2i}{1-2i}\) lies in which quadrant of the complex plane.

    Solution

    Given, \(\frac{(1+2i)}{(1-2i)}\)

    Multiply numerator and denominator with \((1+2i)\).

    \(=\frac{(1+2i)(1+2i)}{(1-2i)(1+2i)}\)

    \(=\frac{(1+4i-4)}{(1+4)}\)

    \(=\frac{(-3+4i)}{5}\)

    \(=-(\frac{3}{5})+(\frac{4}{5})i\)

    It lies in the second quadrant.

  • Question 5
    4 / -1

    If (1−p) is a root of quadratic equation x2 + px + (1−p) = 0, then the roots are equal to:

    Solution

    As (1–p) is root of the equation: x2 + px + (1–p) = 0

    ⇒ (1–p)2 + p (1–p) + (1–p) = 0

    ⇒ (1–p) [1–p+p+1] = 0

    ⇒ (1–p) = 0

    ⇒ p = 1

    Therefore, given equation now becomes

    x2 + x = 0

    ⇒ x (x+1) = 0

    ∴ x = 0, −1

  • Question 6
    4 / -1

    If \(\operatorname{cosec} \theta-\cot \theta=m\), then what is \(\operatorname{cosec} \theta\) equal to?

    Solution

    Given:

    \(\operatorname{cosec} \theta-\cot \theta=m-(\mathrm{i})\)

    We know that,

    \(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\)

    \((\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta)=1\)

    \(m(\operatorname{cosec} \theta+\cot \theta)=1\)

    \((\operatorname{cosec} \theta+\cot \theta)=\frac{1}{m}-(\mathrm{ii})\)

    Add \((\mathrm{i})\) and \((\mathrm{ii})\)

    \(2 \operatorname{cosec} \theta=m+\frac{1}{m}\)

    \(\operatorname{cosec} \theta=\frac{m}{2}+\frac{1}{2 m}\)

  • Question 7
    4 / -1

    The general solution \(\mathrm{y}(\mathrm{x})\) of the differential equation \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{1-\mathrm{y}^2}}{\sqrt{1-\mathrm{x}^2}}\):

    Solution

    The given differential equation is\(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sqrt{1-\mathrm{y}^2}}{\sqrt{1-\mathrm{x}^2}}\).

    \(\frac{\mathrm{dy}}{\sqrt{1-\text{y}^2}}=\frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^2}}\)

    Integrating both sides, we get,

    \(\int \frac{\text{d y}}{\sqrt{1-\text{y}^2}}=\int \frac{\text{dx}}{\sqrt{1-\text{x}^2}}\)

    \(\Rightarrow \sin ^{-1} y=\sin ^{-1} x+c\)

    \(\Rightarrow \sin ^{-1} y=\sin ^{-1} x+\sin ^{-1} c\)

    \(\Rightarrow \sin ^{-1} y-\sin ^{-1} x=\sin ^{-1} c\)

  • Question 8
    4 / -1

    Express the given complex number \(\left(\frac{1}{3}+3 i\right)^{3}\) in the form \(a+i b\):

    Solution
    Given:
    \(\left(\frac{1}{3}+3 i\right)^{3}\)
    \(=\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right)\)
    \(=\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right)\)
    \(=\frac{1}{27}+27(-i)+i+9 i^{2} \quad\left[i^{3}=-i\right]\)
    \(=\frac{1}{27}-27 i+i-9 \quad\left[i^{2}=-1\right]\)
    \(=\left(\frac{1}{27}-9\right)+i(-27+1)\)
    \(=\frac{-242}{27}-26 i\)
  • Question 9
    4 / -1

    If \(\frac{1}{2}\) is a root of the equation \(x^{2}+k x-(\frac{5}{4})=0\) then the value of \(k\) is:

    Solution

    As one root of the equation \(x^{2}+k x-(\frac{5}{4})=0\) is \(\frac{1}{2}\)

    \(\Rightarrow\left(\frac{1}{2}\right)^{2}+\mathrm{k}\left(\frac{1}{2}\right)-\frac{5}{4}=0\)

    \(\Rightarrow \frac{1}{4}+\frac{\mathrm{k}}{2}-\frac{5}{4}=0\)

    \(\Rightarrow 1+2 \mathrm{k}-5=0\)

    \(\Rightarrow 2 \mathrm{k}=4\)

    \(\mathrm{k}=2\)

  • Question 10
    4 / -1

    Consider a binary operation \(^{*}\) on \(\mathrm{N}\) defined as \(a^{*} b=a^{3}+b^{3},\) Choose the correct answer.

    Solution

    On \(\mathrm{N},\) the operation \(^{*}\) is defined as \(a^{*} b=a^{3}+b^{3}\).

    For, \(a, b, \in \mathbf{N},\) we have

    \(a^{*} b=a^{3}+b^{3}=b^{3}+a^{3}=b^{*} a \quad\) [Addition is commutative in \(\left.\mathrm{N}\right]\)

    Therefore, the operation \(^{*}\) is commutative.

    It can be observed that:

    \((1 ^* 2)^{*} 3=\left(1^{3}+2^{3}\right)^{*} 3=(1+8) ^{*} 3=9 ^{*} 3=9^{3}+3^{3}=729+27=756\) and

    \(1^{*}\left(2^{*} 3\right)=1^{*}\left(2^{3}+3^{3}\right)=1^{*}(8+27)=1^{*} 35=1^{3}+35^{3}=1+42875=42876\)

    \(\therefore(1 ^* 2) ^* 3 \neq 1^{*}(2 ^{*} 3),\) where \(1,2,3 \in \mathrm{N}\)

    Therefore, the operation * is not associative.

    Thus, the operation \(^{*}\) is commutative, but not associative.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now