Self Studies

Mathematics Test-9

Result Self Studies

Mathematics Test-9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1
    Find the general solution of \(\frac{d y}{d x}=e^{x-y}\)
    Solution

    Given, 

    \(\frac{d y}{d x}=e^{x-y}\)

    \(\Rightarrow \frac{d y}{d x}=\frac{e^{x}}{e^{y}}\)

    \(\Rightarrow e^{y} d y=e^{x} d x\)

    Now,

    Integrating both sides, we get

    \(\int {e}^{{y}} {dy}=\int {e}^{{x}} {dx}\)

    \(\Rightarrow {e}^{{y}}={e}^{{x}}+{c}\)

  • Question 2
    4 / -1
    The number of non-zero integral solutions of the equation \(|1-2 i|^{x}=5^{x}\) is:
    Solution

    Giving, \(|1-2 i|^{x}=5^{x}\)

    We need to find the value of \(x\) for which should be an integer but not zero.

    Let first find value of \(|1-2 i|\)

    \(\Rightarrow\)\(|1-2 i|=\sqrt{(1)^{2}+(2)^{2}}=\sqrt{5} \quad\left[\because z=x+i y \Rightarrow|z|=\sqrt{x^{2}+y^{2}}\right]\)

    So,

    \(|1-2 i|^{x}=5^{x}\)

    \(\Rightarrow(\sqrt{5})^{x}=5^{x}\)

    \(\Rightarrow\)\((\sqrt{5})^{x}=(\sqrt{5})^{2 x}\)

    Comparing powers,

    \(\Rightarrow x=2 x\)

    \(\Rightarrow x-2 x=0\)

    \(\Rightarrow-x=0\)

    \(\Rightarrow x=0\)

  • Question 3
    4 / -1

    Let \(A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right], C=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]\) Find \({A}+{B}=?\)

    Solution

    \(A=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right], B=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]\)

    \(\therefore {A}+{B}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]+\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]\)

    \(\Rightarrow {A}+{B}=\left[\begin{array}{ll}2+1 & 4+3 \\ 3-2 & 2+5\end{array}\right]\)

    \(\Rightarrow {A}+{B}=\left[\begin{array}{ll}3 & 7 \\ 1 & 7\end{array}\right]\)

  • Question 4
    4 / -1

    Let \(p\) and \(q\) be two positive numbers such that \(p + q =2\) and \(p ^{4}+ q ^{4}=272\). Then \(p\) and \(q\) are roots of the equation:

    Solution

    Given:

    \(p + q =2\) and \(p ^{4}+ q ^{4}=272\)

    Consider, \(\left(p^{2}+q^{2}\right)^{2}-2 p^{2} q^{2}=272\)

    \(\left((p+a)^{2}-2 p q\right)^{2}-2 p^{2} q^{2}=272\)

    \(\Rightarrow 16-16 p q+2 p^{2} q^{2}=272\)

    \(\Rightarrow (p q)^{2}-8 p q-128=0\)

    \(\Rightarrow (p q)^{2}-8 p q-128=0\)

    \(\Rightarrow p q=\frac{8 \pm 24}{2}=16,-8\)

    \(\therefore pq =16\)

    Required equation: \(x ^{2}-(2) x +16=0\)

  • Question 5
    4 / -1

    A game of chance consists of spinning an arrow which is equally likely to come to rest pointing to one of the number \(1,2,3 \ldots \ldots 12\), then the probability that it will point to an odd number is:

    Solution

    The odd numbers (outcomes) are \(1,2,3,4,5,6,7,8,9,10,11,12\) are \(1,3,5,7,9,11\).

    Probability \(= \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}\)

    Therefore probability that an odd number will come is:

    \(\Rightarrow\) \(P(\)odd number\()=\frac{6}{12}\)

    \(\Rightarrow P(\)odd number\()=\frac{1}{2}\)

  • Question 6
    4 / -1

    The value of \(\left|\begin{array}{ccc}a & b & c \\ b+c & c+a & a+b \\ a^2 & b^2 & c^2\end{array}\right|\)

    Solution

    Given,

    \(A=\left|\begin{array}{ccc}a & b & c \\ b+c & c+a & a+b \\ a^2 & b^2 & c^2\end{array}\right|\)

    Applying the column operations

    \(C _1 \rightarrow C _1- C _2\) and \(C _2 \rightarrow C _2- C _3\)

    \(A=\left|\begin{array}{ccc}a-b & b-c & c \\ b-a & c-b & a+b \\ a^2-b^2 & b^2-c^2 & c^2\end{array}\right|\)

    \(\Rightarrow(a-b)(b-c)\left|\begin{array}{ccc}1 & 1 & c \\ -1 & -1 & a+b \\ a+b & b+c & c^2\end{array}\right|\)

    Taking common (a-b) and (b-c) From first and second column respectively.

    \(\Rightarrow(a-b)(b-c)\left|\begin{array}{ccc}1 & 1 & c \\ -1 & -1 & a+b \\ a+b & b+c & c^2\end{array}\right|\)

    Applying column operation \(C_1 \rightarrow C_1-C_2\)

    \(\Rightarrow(a-b)(b-c)\left|\begin{array}{ccc}0 & 1 & c \\ 0 & -1 & a+b \\ a-c & b+c & c^2\end{array}\right|\)

    Now solving the determinant we get,

    \(A=(a-b)(b-c)[(a-c) \times\{(a+b)-(-c)\}] \)

    \(A=-(a-b)(b-c)(c-a)(a+b+c)\)

  • Question 7
    4 / -1

    The value of sinπ10+sin13π10is:

    Solution

  • Question 8
    4 / -1

    If \(z=-2+5 i\) then \(z^{2}+4 z+30\) is:

    Solution
    Given,
    \(z=-2+5 i\)
    \(\Rightarrow z+2=5 i\)
    Squaring both sides, we get
    \((z+2)^{2}=(5 i)^{2}\)
    \(\Rightarrow z^{2}+4 z+4=-25\)
    \(\Rightarrow z^{2}+4 z+29=0\)
    Now, adding \((1)\) both sides, we get
    \(\therefore z^{2}+4 z+30=1\)
  • Question 9
    4 / -1

    Three vectors of magnitudes \(a, 2a, 3 a\) meet at a point and their directions are along the diagonals of three adjacent faces of a cube. Then, the magnitude of their resultant is:

    Solution

    Suppose that the sides of the cube are unity and unit vector along \(O A, O B\) and \(O C\) are \(\hat{i}, \hat{j}, k\) respectively. \(OR, OS, OT\) are diagonals of a cube having corresponding vector \(a, 2 a\) and \(3 a\) (Magnitude) respectively.

     

    \(\therefore\) Unit vector along \(O R=\frac{\hat{j}+\hat{k}}{\sqrt{2}}\)

    \(\therefore\) Vector along \(\overrightarrow{O R}=a\left(\frac{\hat{j}+\hat{k}}{\sqrt{2}}\right)\) Similarly, vector along \(\overrightarrow{O S}=2 a\left(\frac{\hat{k}+\hat{i}}{\sqrt{2}}\right)\) and vector along \(\overrightarrow{O T}=3 a\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)\)

    \(\therefore\) Resultant \(R=\overrightarrow{O R}+\overrightarrow{O S}+\overrightarrow{O T}\)

    \(=a\left(\frac{\hat{i}+\hat{k}}{\sqrt{2}}\right)+2 a\left(\frac{\hat{k}+\hat{i}}{\sqrt{2}}\right)+3 a\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)\)

    \(=\frac{5 a}{\sqrt{2}} \hat{i}+\frac{4 a}{\sqrt{2}} \hat{j}+\frac{3 a}{\sqrt{2}} \hat{k}\)

    \(\therefore|R|=\sqrt{\frac{25 a^2}{2}+\frac{16 a^2}{2}+\frac{9 a^2}{2}}=5 a\)

  • Question 10
    4 / -1

    In the expansion of \(\left(x^{3}-\frac{1}{x^{2}}\right)^{15}\), the constant term, is:

    Solution

    Given:

    \(\left(x^{3}-\frac{1}{x^{2}}\right)^{15}\)

    Let \((r+1)^{t h}\) term be the constant term in the expansion of \(\left(x^{3}-\frac{1}{x^{2}}\right)^{15}\).

    We know that in the binomial expansion of \((a+x)^{n}\), we have,

    \(T_{r+1}={ }^{n} C_{r} x^{n-r} a^{r}\)

    \(\therefore T_{r+1}={ }^{15} C_{r}\left(x^{3}\right)^{15-r}\left(-\frac{1}{x^{2}}\right)^{r}\)

    \(T_{r+1}={ }^{15} C_{r} x^{45-5 r}(-1)^{r}\) is independent of \(x\). If:

    \(45-5 r=0\)

    \(\Rightarrow r=9\)

    Thus, \(10^{\text {th }}\) term is independent of \(x\) and is given by

    \(T_{10}={ }^{15} C_{9}(-1)^{9}\)

    \(=-{ }^{15} C_{9}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now