Given equation of lines:
\(\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})\)
\(\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\mathbf{5} \hat{\mathbf{k}}+\boldsymbol{\mu}(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})^{-\cdots}-(2)\)
position vector and normal vector of line (1)
\(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathbf{n}_{1}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\)
position vector and normal vector of line (2)
\(\overrightarrow{\mathbf{c}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathbf{n}_{2}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\mathbf{5} \hat{\mathbf{k}}\)
shortest between two skews line \(\mathrm{SD}=\frac{\overrightarrow{\mathbf{A C}} \cdot\left(\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right)}{\left|\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right|}\)
\(\mathbf{A} \mathbf{C}=\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}\)
\(\mathbf{A} \mathbf{C}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\mathbf{5} \hat{\mathbf{k}}-(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})\)
\(\mathbf{A} \mathbf{C}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}-\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)
\(\mathbf{A} \mathbf{C}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|\)
\(\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}=\hat{\mathbf{i}}(15-16)-\hat{\mathbf{j}}(\mathbf{1 0}-\mathbf{1 2})+\hat{\mathbf{k}}(\mathbf{8}-\mathbf{9})\)
\(\overrightarrow{\mathbf{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}\)
\(\left|\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right|=\sqrt{(-1)^{2}+2^{2}+(-1)^{2}}\)
\(\left|\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right|=\sqrt{6}\)
putting \(\mathrm{AC}.\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2},\left|\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right|\) in formula
\(\mathrm{SD}=\frac{\overrightarrow{\mathbf{A C}} \cdot\left(\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}\right)}{\left|\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right|}\)
\(\mathbf{S D}=\frac{(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \cdot(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})}{\sqrt{\mathbf{6}}}\)
\(\mathrm{SD}=\frac{-1+4-2}{\sqrt{6}}\)
\(\mathrm{SD}=\frac{1}{\sqrt{6}}\)