Self Studies

Mathematics Test - 10

Result Self Studies

Mathematics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If f(x) = | x |, then f′(2) =

    Solution
    \(R f^{\prime}(2)=\frac{10}{1-0} \frac{f(2+h)-f(2)}{h}\)
    \(=\lim _{h \rightarrow 0} \frac{|2+h|-|2|}{h}=\lim _{h \rightarrow 0} \frac{2+h-2}{h}=1\)
    \(L(2)=\lim _{h \rightarrow 0} \frac{f(2-h)-\pi(2)}{-h}\)
    \(=\lim _{h \rightarrow 0} \frac{|2-h|-|2|}{-h}=\lim _{h \rightarrow 0} \frac{2-h-2}{-h}=1\)
    \(R f^{\prime}(2)=L f^{\prime}(2)=1\)
    So. \(f^{\prime}(2)=1\)
  • Question 2
    4 / -1

    \(\int_{0}^{\pi / 2} \sin ^{2} x d x=\)

    Solution
    \(n=\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos 2 x) d x\)
    \(=\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi / 2}=\frac{\pi}{4}\)
  • Question 3
    4 / -1

    The area of the region bounded by y = | x - 1 | and y = 1 is

    Solution

    Required Area \(=\int_{0}^{1}\left(x_{2}-x_{1}\right) d y=\int_{0}^{1}\{(x+1)-(-x+1)\} d x\)
    \(=\int_{0}^{1} 2 x d x=\left[x^{2}\right]=1\)
  • Question 4
    4 / -1
    If \(\mathrm{A}, \mathrm{B}\) and \(\mathrm{C}\) be the angles of a triangle, then \(\Sigma \frac{\cot A+\cot B}{\tan A+\tan B}=\)
    Solution
    To find, \(\Sigma \frac{\cot A+\cot B}{\tan A+\tan B}\)
    \(\cot A+\cot B=\frac{1}{\tan A}+\frac{1}{\tan B}=\frac{\tan A+\tan B}{\tan A \tan B}\)
    Putting the value in (1). we get \(\Rightarrow \quad \Sigma \frac{\frac{\tan A+\tan B}{\tan A \tan B}}{\tan A+\tan B}=\Sigma \frac{1}{\tan A \tan B}\)
    \(=\frac{1}{\tan A \tan B}+\frac{1}{\tan B \tan C}+\frac{1}{\tan A \tan C}\)
    Let \(A=B=C=60^{\circ}\)
    Putting the values in the above equation, we get \(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
  • Question 5
    4 / -1

    In how many ways can 8 students be arranged in a row?

    Solution

    Required number of ways = 8!

    Hence option A is correct.

  • Question 6
    4 / -1

    India plays two matches each with West Indies and Australia. In any match, the probabilities of India getting points 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting atleast 7 points is

    Solution

    Probability of getting atleast seven points

    = Probability of getting 7 points or 8 points

    = Prob. of getting 7 points + Prob. of getting 8 points.

    Seven points in four matches can be obtained in the following four different ways :

    2, 2, 2, 1;

    2, 2, 1, 2;

    2, 1, 2, 2;

    1, 2, 2, 2

    The probability of each of these ways = (0.50)3 x (0.05) (by multiplication theorem for independent events)

    = 0.00625

    Hence, probability of getting 7 points = 4 x (0.00625) (by add. Theorem)

    = 0.0250.

    Eight points in four matches can be obtained only in one way i.e. 2, 2, 2, 2.

    Hence, Prob. of getting 8 points = (0.50)4 = 0.0625

    Thus, the required prob. = 0.250 + 0.0625 = 0.0875.

  • Question 7
    4 / -1

    Find shortest distance between lines \(\overrightarrow{\mathrm{r}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+4 \hat{\mathbf{k}})\) and \(\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}+\mu(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})\)

    Solution

    Given equation of lines:

    \(\overrightarrow{\mathbf{r}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}+\lambda(2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})\)

    \(\overrightarrow{\mathbf{r}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\mathbf{5} \hat{\mathbf{k}}+\boldsymbol{\mu}(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})^{-\cdots}-(2)\)

    position vector and normal vector of line (1)

    \(\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}\)

    \(\overrightarrow{\mathbf{n}_{1}}=2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\)

    position vector and normal vector of line (2)

    \(\overrightarrow{\mathbf{c}}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}\)

    \(\overrightarrow{\mathbf{n}_{2}}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\mathbf{5} \hat{\mathbf{k}}\)

    shortest between two skews line \(\mathrm{SD}=\frac{\overrightarrow{\mathbf{A C}} \cdot\left(\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right)}{\left|\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right|}\)

    \(\mathbf{A} \mathbf{C}=\overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}\)

    \(\mathbf{A} \mathbf{C}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\mathbf{5} \hat{\mathbf{k}}-(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})\)

    \(\mathbf{A} \mathbf{C}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}-\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}\)

    \(\mathbf{A} \mathbf{C}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}\)

    \(\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right|\)

    \(\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}=\hat{\mathbf{i}}(15-16)-\hat{\mathbf{j}}(\mathbf{1 0}-\mathbf{1 2})+\hat{\mathbf{k}}(\mathbf{8}-\mathbf{9})\)

    \(\overrightarrow{\mathbf{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}=-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}\)

    \(\left|\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right|=\sqrt{(-1)^{2}+2^{2}+(-1)^{2}}\)

    \(\left|\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right|=\sqrt{6}\)

    putting \(\mathrm{AC}.\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2},\left|\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathrm{n}}_{2}\right|\) in formula

    \(\mathrm{SD}=\frac{\overrightarrow{\mathbf{A C}} \cdot\left(\overrightarrow{\mathrm{n}}_{1} \times \overrightarrow{\mathbf{n}}_{2}\right)}{\left|\overrightarrow{\mathbf{n}_{1}} \times \overrightarrow{\mathbf{n}_{2}}\right|}\)

    \(\mathbf{S D}=\frac{(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}) \cdot(-\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}})}{\sqrt{\mathbf{6}}}\)

    \(\mathrm{SD}=\frac{-1+4-2}{\sqrt{6}}\)

    \(\mathrm{SD}=\frac{1}{\sqrt{6}}\)

  • Question 8
    4 / -1

    A man of 2 m height walks at a uniform speed of 6 km/h away from a lamp post of 6 m height. The rate at which the length of his shadow increases is

    Solution

    In a ADC

    \(\quad \tan \theta=\frac{6}{x+y}\)
    and in \(\Delta B C E,\)
    \(\begin{aligned} \tan \theta=& \frac{2}{x} \\ \frac{2}{x}=\frac{6}{x+y} & \Rightarrow x+y=3 x \\ \Rightarrow & y=2 x \end{aligned}\)
    On differentiating w.r.t. \(t\), we get
    \(\frac{d y}{d t}=2 \frac{d x}{d t}\)
    \(\Rightarrow \quad 6=2 \frac{d x}{d t} \quad\left(\because \frac{d y}{d t}=6 \operatorname{given}\right)\)
    \(\Rightarrow \quad \frac{d x}{d t}=3 \mathrm{km} / \mathrm{h}\)
  • Question 9
    4 / -1
    If \(A+B+C=180^{\circ}\), then \(\frac{\tan A+\tan \theta+\tan C}{\tan A . \tan B . \tan C}=\)
    Solution
    \(A+B+C=180^{\circ}\)
    \(A+B=180-C\)
    \(\tan (A+B)=\tan (180-C)\)
    \(\tan A+\tan B\)
    \(1-\tan A \tan B^{\prime}=-\tan C\)
    \(\tan A+\tan B+\tan C=\tan A \tan B \tan C\)
    \(\operatorname{So.} \frac{\tan A+\tan B+\tan C}{\tan A \tan B \tan C}=1\)
  • Question 10
    4 / -1

    Three of six vertices of a regular hexagon are chosen at random. The probability that the triangle with these three vertices will be equilateral is

    Solution

    Let ABCDEF be a regular hexagon.

    Three vertices out of its 6 vertices can be chosen in 6C3 ways. Therefore, 20 triangles can be made by joining three vertices at a time.

    Out of these 20 triangles, only ACE and BDF are equilateral. Hence, the required probability = 1/10.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now