Self Studies

Mathematics Test - 17

Result Self Studies

Mathematics Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If sin (sin-1 1/7 + cps-1 x) = 1, then x is equal to

    Solution
    \(\sin \left(\sin ^{-1} \frac{1}{7}+\cos ^{-1} x\right)=1\)
    \(\Rightarrow \sin ^{-1} \frac{1}{7}+\cos ^{-1} x=\frac{\pi}{2}\)
    \(\Rightarrow \sin ^{-1} \frac{1}{7}=\frac{\pi}{2}-\cos ^{-1} x\)
    \(\Rightarrow \sin ^{-1} \frac{1}{7}=\sin ^{-1} x\)
    \(\Rightarrow x=\frac{1}{7}\)
  • Question 2
    4 / -1

    If f : R → R is defined by

    f (x) = x2 – 3x; if x > 2

    = x + 2; if x < 2,

    then f(4) =

    Solution

    f (4) = x2 - 3x

    = (4)2 - 3(4)

    = 16 - 12 = 4

  • Question 3
    4 / -1

    Which of the following is logically equivalent to ∼ (∼p ⇒ q) ?

    Solution
    p q ~p ~q ~p=>q ~(~p=>q) pvq pv~q ~pvq ~pv~q
    F F T T F T F F F T
    F T T F T F F F T F
    T F F T T F F T F F
    T T F F T F T F F F
  • Question 4
    4 / -1

    Suppose f(x) = (x + 1)2 for x - 1. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to line y = x, then g(x) is equal to

    Solution
    g(x) \rightarrow reflection of f(x) in \operatorname{lin} e y=x
    \begin{array}{c} f(x)=(x+1)^{2} \\ \quad y=(x+1)^{2} \\ \quad(x+1)=\pm \sqrt{y} \\ x=\pm \sqrt{y}-1 \\ x=\sqrt{y}-1 \end{array}
    \(f^{-1}(y)=\sqrt{y}-1\)
    \(f^{-1}(x)=\sqrt{x}-1\)
    \(g(x)=\sqrt{x}-1\)
  • Question 5
    4 / -1

    Directions: The following question has four choices, out of which ONE or MORE is/are correct.

    \(\int_{0}^{2 \pi} \frac{\sin 2 \theta}{a-b \cos \theta} d \theta,\) when \(a>b>0,\) is equal to
    Solution
    \(\operatorname{Let I} =\int_{0}^{2 \pi} \frac{\sin 2 \theta}{a-b \cos \theta} d \theta\)
    Then, \(I=\int_{8}^{2 \pi} \frac{\sin 2(2 \pi-\theta)}{a-b \cos (2 \pi-\theta)} d \theta\)
    \(\operatorname{tusing} \int_{2 \pi}^{\pi} f(x) d x=\int_{0}^{a} f(a-x) d x\)
    Or \(\mid=\int_{0}^{2 \pi} \frac{-\sin 2 \theta}{a-b \cos \theta} d \theta\)
    Or \(I=-1\)
    \(\Rightarrow 21=0\)
    \(\Rightarrow 1=0\)
  • Question 6
    4 / -1
    \(\int e^{3 \log x}\left(x^{4}+1\right)^{-1} d x\) is equal
    Solution
    \(I=\int e^{3 \log x}\left(x^{4}+1\right)^{-1} d x\)
    \(=\int \frac{e^{\log x}}{1+x^{4}} d x\)
    \(=\int \frac{x^{3}}{1+x^{4}} d x,\) put \(1+x^{4}=t\)
    \(4 x^{3} d x=d t\)
    \(I=\int \frac{1}{t}\left(\frac{d t}{4}\right)=\frac{1}{4} \log t+C\)
    \(=\frac{1}{4} \log \left(1+x^{4}\right)+C\)
  • Question 7
    4 / -1

    The tangent to the circle x2 + y2 = 5 at (1, − 2) also touches the circle x2 + y2 − 8x + 6y + 20 = 0. Then the point of contact is

    Solution

    Tangent at (1, − 2) to x2 + y2 = 5 is

    x − 2y − 5 = 0 ... (i).

    Centre and radius of

    x2 + y2 − 8x + 6y + 20 = 0 are

    C (4, − 3) and radius r = √5.

    Perpendicular distance from

    C (4, − 3) to (i) is radius.

    ∴ (i) is also a tangent to the second circle.

    Let P (h, k) be the foot of the drawn circle from C (4, − 3) on (i)
    h-4/1 = k=3/-2 = - [1.4 -2. (-3)-5]

    ∴ (h, k) = (3, −1)

  • Question 8
    4 / -1

    What is the total number of different combinations of names, which can be made from the letters of the word MISSISSIPPI, using all the letters at a time?

    Solution

    Here, we have 1 M, 4 I's, 4 S's and 2 P's,

    Hence, the total number of different combinations of letters of the word MISSISSIPPI are 11!/41 x 41 x2! .

  • Question 9
    4 / -1

    If \(f(a+b-x)=f(x)\), then \(\int_{\frac{1}{2}}^{b} x f(x) d x\) is equal to

    Solution
    \(\operatorname{Let} \mid=\int_{\frac{\pi}{2}}^{b} x f(x) d x\)
    Then \(1=\int_{\frac{\pi}{2}}^{b}(a+b-x) f(a+b-x) d x\)
    \(=(a+b) \int_{\frac{1}{2}}^{b} f(a+b-x) d x-\int_{a}^{b} x f(a+b-x) d x\)
    \(=(a+b) \int_{a}^{b} f(x) d x-[x f(x) d x \quad \mid \because f(a+b-x)=f(x)]\)
    \(2 \mid=(a+b) \int_{3} f(x) d x\)
    \(\mid=\frac{a+b}{2} \int_{i}^{b} f(x) d x\)
  • Question 10
    4 / -1

    The equation of the normal to the ellipse x2/a2 + y2/b2 = 1 at the positive end of the latus rectum is

    Solution
    The equation of the normal at \(\left(x_{1}, y_{1}\right)\) to the given ellipse is \(\frac{\mathrm{a}^{2} \mathrm{x}}{\mathrm{x}_{1}}-\frac{\mathrm{b}^{2} \mathrm{y}}{\mathrm{y}_{1}}=\mathrm{a}^{2}-\mathrm{b}^{2}\)
    Here \(\mathrm{x}_{1}=\mathrm{ae}\) and \(\mathrm{y}_{1}=\mathrm{b}^{2} / \mathrm{a}\)
    So the equation of the normal at positive end of the latus rectum is \(\frac{a^{2} x}{a e}-\frac{b^{2} y}{\frac{b^{2}}{a}}=a^{2} e^{2}\)
    \(\left(\because b^{2}=a^{2}\left(1-e^{2}\right)\right)\)
    \(\Rightarrow \frac{\mathrm{ax}}{\mathrm{e}}-\mathrm{ay}=\mathrm{a}^{2} \mathrm{e}^{2}\)
    \(\Rightarrow x-e y-e^{3} a=0\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now