Self Studies

Mathematics Tes...

TIME LEFT -
  • Question 1
    4 / -1

    The approximate value of square root of 25.2 is

  • Question 2
    4 / -1

    Let \(f(x)=\left\{\begin{array}{l}1+\sin x, x<0 \\ x^{2}-x+1, x \geq 0\end{array}\right.\). Then

  • Question 3
    4 / -1

    If one root of the quadratic equation \(a x^{2}+b x+c=0\) is equal to the \(n^{\text {th }}\) power of the other root, then the value of \(\left(a c^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} c\right)^{\frac{1}{n+1}}\)

  • Question 4
    4 / -1

    If \(3 \sin ^{-1} \frac{2 x}{1+x^{2}}-4 \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}+2 \tan ^{-1} \frac{2 x}{1+x^{2}}=\frac{\pi}{3}\) then \(x=\)

  • Question 5
    4 / -1

    If \(\lim _{x \rightarrow 0}(1+a \sin x)^{\text {cosec x}}=3,\) then a is

  • Question 6
    4 / -1

    If the tangent to the curve \(\sqrt{x}+\sqrt{y}=\sqrt{a}\) at any point on it cuts the axes OX and OY at P and Q respectivelv. then \(\mathrm{OP}+\mathrm{OQ}\) is

  • Question 7
    4 / -1

    \(\sin \left(\frac{1}{2} \cos ^{-1} \frac{4}{5}\right)=\)

  • Question 8
    4 / -1

    With reference to a universal set, the inclusion of a subset in another, is relation, which is

  • Question 9
    4 / -1

    The value of \(\sqrt{\left(\log _{0.5}^{2} 4\right)}\) is

  • Question 10
    4 / -1

    Let \(g(x)\) be an antiderivative for \(f(x) .\) Then \(\ln \left(1+(g(x))^{2}\right)\) is an antiderivate for

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now