Self Studies

Mathematics Test - 22

Result Self Studies

Mathematics Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    If f(x) is a function whose domain is symmetric about the origin, then f(x) + f(–x) is

    Solution

    (a, b)

    g(x) = f(x) + f(–x)

    g(–x) = f(–x) + f(x) = g(x)

    therefore g(x) is even

  • Question 2
    4 / -1

    If \(f(9)=9, f^{\prime}(9)=4,\) then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) equals

    Solution
    Given that \(f(9)=9, f^{\prime}(9)=4\)
    \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\)
    On rationalisation we get -
    \(=\lim _{x \rightarrow 9}\left(\frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\right)\left(\frac{\sqrt{x}+3}{\sqrt{x}+3}\right)\left(\frac{\sqrt{f(x)}+3}{\sqrt{f(x)}+3}\right)\)
    \(=\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{x-9} \cdot \frac{6}{6}\)
    \(=\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{x-9}\)
    \(=f^{\prime}(9)\)
    \(=4\)
  • Question 3
    4 / -1
    If the sets \(A\) and \(B\) are defined as
    \(A=\left\{(x, y): y=\frac{1}{x^{\prime}} 0 \neq x \in R\right\}\)
    \(B=[(x, y): y=-x, x \in R],\) then
    Solution
    Since \(y=\frac{1}{x^{2}} y=-x\) meet when \(-x=\frac{1}{x} \Rightarrow x^{2}=-1\)
    which does not give any real value of \(x\).
    Hence, \(A \cap B=\emptyset\).
  • Question 4
    4 / -1

    If \(f(x)=\sqrt{x}, g(x)=e^{x-1},\) and \(\int f o g(x) d x=A f o g(x)+B t a n^{-1}(f o g(x))+C,\) then

    \(A+B\) is equal to

    Solution
    \(\operatorname{fog}(x)=\sqrt{e^{x}-1}\)
    \(\therefore I=\int \sqrt{e^{x}-1} d x=\int \frac{2 t^{2}}{t^{2}+1} d t\{\) where \(t=\sqrt{e^{x}-1}\}\)
    \(=2 t-2 \tan ^{-1} t+C\)
    \(=2 \sqrt{e^{x}-1}-2 \tan ^{-1}(\sqrt{e^{x}-1})+C\)
    \(=2 \operatorname{fog}(x)-2 \tan ^{-1}(\operatorname{fog}(x))+C\)
    \(\therefore A+B=2+(-2)=0\)
  • Question 5
    4 / -1

    If \(x=\sin \left(2 \tan ^{-1} 2\right), y=\sin \left(\frac{1}{2} \tan ^{-1} \frac{4}{3}\right)\) then

    Solution

    2tan-12=π+tan-12+21-4

    =π+tan-14-3

    =π-tan-43

    Let,tan-43=θ

    x=sinπ-θ,y=sinθ2

    x2+y2=sin2θ+1-cosθ2

    =1625+15=2125

    y2=15,1-x=1-45=15

    y2=1-x

  • Question 6
    4 / -1

    In a town of 10,000 families it was found that 40% family buy newspaper A, 20% buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then number of families which buy A only is

    Solution

    n(A) = 40% of 10,000 = 4,000

    n(B) = 20% of 10,000 = 2,000

    n(C) = 10% of 10,000 = 1,000

    n(A ∩ B) = 5% of 10,000 = 500

    n(B ∩ C) = 3% of 10,000 = 300

    n(C ∩ A) = 4% of 10,000 = 400

    n(A ∩ B ∩ C) = 2% of 10,000 = 200

    We want to find the number of families which buy only A = n(A) - [n(A ∩ B) + n(A ∩ C) - n(A ∩ B ∩ C)]

    =4000 - [500 + 400 - 200] = 4000 - 700 = 3300

  • Question 7
    4 / -1

    \(\lim _{x \rightarrow-\infty}\left\{\frac{x^{4} \sin \left(\frac{1}{x}\right)+x^{2}}{1+|x|^{3}}\right\}\) is equal to

    Solution
    \(\lim _{x \rightarrow-\infty}\left[\frac{x^{4} \sin \left(\frac{1}{x}\right)+x^{2}}{1+|x|^{3}}\right]\)
    \(\lim _{x \rightarrow-\infty} \frac{x^{3}}{1+|x|^{3}}\left[x \sin \left(\frac{1}{x}\right)+\frac{1}{x}\right]\)
    As \(x \rightarrow-\infty\)
    \(\frac{x^{3}}{1+|x|^{3}}=-1\)
    \(x \sin \left(\frac{1}{x}\right)+\frac{1}{x}=1\)
    \(\Rightarrow \lim _{x \rightarrow-\infty} \frac{x^{3}}{1+|x|^{3}}\left(x \sin \frac{1}{x}+\frac{1}{x}\right)=-1\)
  • Question 8
    4 / -1

    The distance moved by the particle in time \(t\) is given by \(x=t^{3}-12 t^{2}+6 t+8 .\) At

    the instant when its acceleration is zero, then the velocity is

    Solution
    \(x=t^{3}-12 t^{2}+6 t+8\)
    \(\Rightarrow \frac{d x}{d t}=3 t^{2}-24 t+6 a n d \frac{d^{2} x}{d t^{2}}=6 t-24\)
    Now, Acceleration =0 \(\Rightarrow \frac{d^{2} x}{d t^{2}}=0 \Rightarrow 6 t-24=0 \Rightarrow t=4\)
    \(\mathrm{Att}=4,\) we have Velocity \(=\left(\frac{d x}{d t}\right)_{r-4}=3 \times 4^{2}-24 \times 4+6=-42\)
    Hence (b) is the correct answer.
  • Question 9
    4 / -1

    The value of \(\sin \left[2 \tan ^{-1}\left(\frac{1}{3}\right)\right]+\cos \left[\tan ^{-1}(2 \sqrt{2})\right]=\)

    Solution
    \(\sin \left[2 \tan ^{-1}\left(\frac{1}{3}\right)\right]+\cos \left[\tan ^{-1}(2 \sqrt{2})\right]\)
    \(=\sin \left[\tan ^{-1} \frac{\frac{2}{3}}{1-\frac{1}{9}}\right]+\cos \left[\tan ^{-1}(2 \sqrt{2})\right]\)
    \(=\sin \left[\tan ^{-1} \frac{3}{4}\right]+\cos \left[\tan ^{-1} 2 \sqrt{2}\right]\)
    \(=\tan ^{-1} 2 \sqrt{2}=\cos ^{-1} \frac{1}{3}\)
    Also \(\tan ^{-1} \frac{3}{4}=\sin ^{-1} \frac{3}{5}\)
    \(=\frac{3}{5}+\frac{1}{3}=\frac{14}{15}\)
  • Question 10
    4 / -1

    If \(\sin x+\operatorname{cosec} x=2,\) then \(\sin ^{n} x+\operatorname{cosec}^{n} x\) is equal to

    Solution
    \(\sin x+\operatorname{cosec} x=2 \Rightarrow(\sin x-1)^{2}=0 \Rightarrow \sin x=1\)
    \(\therefore \sin ^{n} x+\operatorname{cosec}^{n} x=1+1=2\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now