Self Studies

Mathematics Test - 27

Result Self Studies

Mathematics Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1
    If for a real number \(x,[x]\) is the greatest integer less than or equal to \(x,\) then the value of the integral \(\int_{\pi / 2}^{3 \pi / 2}[2 \sin x] d x\)
    Solution
    We have \(I=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}[2 \sin x] d x\)
    Taking all the integral values from \(\pi / 2\) to \(3 \pi / 2\) gives the integer.
    \(\int_{\pi / 2}^{3 \pi / 2}[2 \sin x] \mathrm{d} x=\int_{\pi / 2}^{5 \pi / 6}[2 \sin x] d x+\int_{5 \pi / 6}^{\pi}[2 \sin x] d x+\int_{\pi}^{7 \pi / 6}[2 \sin x] d x+\)
    \(\int_{7 \pi / 6}^{3 \pi / 2}[2 \sin x] d x\)
    \(=\int_{\pi / 2}^{5 \pi / 6} 1 \mathrm{dx}+\int_{5 \pi / 6}^{\pi} 0 \mathrm{dx}+\int_{\pi}^{7 \pi / 6}-1 \mathrm{dx}+\int_{7 \pi / 6}^{3 \pi / 2}-2 \mathrm{dx}\)
    \(=(5 \pi / 6-\pi / 2)-(7 \pi / 6-\pi)-2(3 \pi / 2-7 \pi / 6)=-(\pi / 2)\)
  • Question 2
    4 / -1

    If \(A=\left[\begin{array}{rrr}x & 3 & 2 \\ -3 & y & -7 \\ -2 & 7 & 0\end{array}\right]\) and \(A=-A^{T},\) then \(x+y\) is equal to

    Solution
    \(A=-A^{\top}\)
    \(\Leftrightarrow \quad A\) is a skew-symmetric matrix.
    \(\Rightarrow \quad\) Diagonal elements of A are zeroes.
    \(\Rightarrow \quad x=0, y=0\)
    \(x+y=0\)
  • Question 3
    4 / -1
    \(f(x)=\frac{e^{x}-e^{-x}}{2}, g(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\)

    (1) f(x) has one point of inflexion.

    (2) g(x) has one point of inflexion.

    (3) f(x) has one point of local minima.

    (4) g(x) has one point of local maxima.

    Which one of the following is correct regarding the above statements?
    Solution
    \(\mathrm{f}(\mathrm{x})=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2} \Rightarrow \mathrm{f}^{*}(\mathrm{x})=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}\)
    \(\Rightarrow \mathrm{f}^{\prime \prime}(0)=0, \mathrm{f}^{\prime \prime}\left(0^{+}\right)>0, \mathrm{f}^{\prime \prime}\left(0^{-}\right)<0\)
    \(\therefore \mathrm{x}=0\) is point of inflexion of \(f(x)\) Now, \(g(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \Rightarrow g^{\prime \prime}(x)=\frac{-8\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{3}}\)
    \(\Rightarrow g^{\prime \prime}(0)=0, g^{\prime \prime}\left(0^{+}\right)<0, g^{*}\left(0^{-}\right)>0\)
    \(\therefore \mathrm{x}=0\) is point of inflexion of \(\mathrm{g}(\mathrm{x})\)
    \(\therefore\) the option is correct.
  • Question 4
    4 / -1

    If \(A=\left[\begin{array}{rrr}\cos \frac{\pi}{5} & \sin \frac{\pi}{5} \\ -\sin \frac{\pi}{5} & \cos \frac{\pi}{5}\end{array}\right],\) and \(B=A+A^{2}+A^{3}+A^{4},\) which of the following statements is/are correct?

    Solution
    If \(P=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]\)
    Then, \(P^{n}=\left[\begin{array}{cc}\cos n \alpha & \sin n \alpha \\ -\sin n \alpha & \cos n \alpha\end{array}\right]\)
    \(B=A+A^{2}+A^{3}+A^{4}\)
    \(=\left[\begin{array}{cc}\cos \left(\frac{\pi}{5}+\frac{2 \pi}{5}+\frac{3 \pi}{5}+\frac{4 \pi}{5}\right) & \left.\sin \left(\frac{\pi}{5}+\frac{2 \pi}{5}+\frac{3 \pi}{5}+\frac{4 \pi}{5}\right)\right] \\ -\sin \left(\frac{\pi}{5}+\frac{2 \pi}{5}+\frac{3 \pi}{5}+\frac{4 \pi}{5}\right) & \cos \left(\frac{\pi}{5}+\frac{2 \pi}{5}+\frac{3 \pi}{5}+\frac{4 \pi}{5}\right)\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]\)
    \(\therefore \mathrm{B}\) is symmetric and \(\mathrm{B}\) is invertible.
    Also, \(A^{10}=1\)
    \(\therefore \mathrm{A}\) is periodic.
    So, option 4 is correct
  • Question 5
    4 / -1

    What is the circumradius of a triangle with length of sides as 6 units, 8 units and 10 units?

    Solution

    As the given triangle is a right triangle, the circumradius is half of the hypotenuse which is 5 units

    Hence, answer option 2 is correct.

  • Question 6
    4 / -1

    Let f(x) = sin x + cos x. Then,

    Solution
    \[
    \begin{aligned}
    f^{\prime}(x)=& \cos x-\sin x=0 \Rightarrow x=n \pi+\pi / 4 \\
    f^{\prime \prime}(x)=&-\sin x-\cos x=-(\sin x+\cos x) \\
    & f^{\prime \prime}\left(n \pi+\frac{\pi}{4}\right)=(-1)^{n+1} \\
    &\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right)=(-1)^{n+1} \sqrt{2}
    \end{aligned}
    \]
    If \(n\) is even then \(f(x)\) has maxima and if \(n\) is odd then
  • Question 7
    4 / -1

    Solution

  • Question 8
    4 / -1

    The number of subsets of the set A = {a1, a2, …, an} which contain even number of elements is

    Solution

    For each of the first \((n-1)\) elements a \(1, a_{2}, \ldots, a_{n-1},\) we have two choices: either a \(_{i}(1\)

    \(\leq i \leq n-1\) ) lies in the subset or a a doesn't lie in the subset. For the last element, we

    have just one choice. If even number of elements have already been selected, we do not include an in the subset, otherwise (when odd number of elements have been

    selected), we include it in the subset. Thus, the number of subsets of \(A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\) which contain even number of

    elements is equal to \(2^{\mathrm{n}}-1\)

  • Question 9
    4 / -1

    A line 'm' is drawn as reflection of the line \({ }^{\prime} \ell^{\prime}\) on the \(\mathrm{x}\) -axis as shown in the figure given below. What will be the slope of line 'm'? (It is given that the reflection is about the x-axis.)

    Solution

    The reflected line 'm' passes through (0, - 2) and (3, 0). So, slope \(=\frac{0-(-2)}{3-0}=\frac{2}{3}\)
  • Question 10
    4 / -1

    If \(\lim _{x \rightarrow 0}\left(1+x \log \left(1+b^{2}\right)\right)^{1 / x}=2 b \sin ^{2} \theta, b / 0\) and \(\theta \in[-\pi, \pi],\) then the value of \(\theta\) is

    Solution
    \(\lim _{x \rightarrow 0}\left(1+x \log \left(1+b^{2}\right)\right)^{1 / x}\)
    \(=\lim _{x \rightarrow 0}\left(1+x \log \left(1+b^{2}\right)^{\frac{1}{x \log \left(1+b^{2}\right)} \times \log \left(1+b^{2}\right)}\right.\)
    \(=e^{\log \left(1+b^{2}\right)}=1+b^{2}\)
    Thus,
    \(1+b^{2}=2 b \sin ^{2} \theta\)
    \(\Rightarrow \quad \sin ^{2} \theta=\frac{1+b^{2}}{2 b} \geq 1\)
    \(\Rightarrow \quad \sin ^{2} \theta=1 \Rightarrow \sin \theta=\pm 1\) or \(\quad \theta=\pm \pi / 2\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now