Self Studies

Mathematics Test - 28

Result Self Studies

Mathematics Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Let Tn denote the number of triangles which can be formed by using the vertices of a regular polygon of n sides. If Tn +1 – Tn = 21, then n equals

    Solution
    The number of triangles that can be formed by using the vertices of a regular polygon
    is \({ }^{n} C_{3},\) i.e. \(T_{n}={ }^{n} C_{3}\)
    Now, \(T_{n+1}-T_{n}=21\)
    \(\Rightarrow \quad n+1_{C_{3}-} n_{C_{3}}=21\)
    \(\Rightarrow \quad n C_{2}+n C_{3}-n C_{3}=21 \quad\left[\because n+1_{C_{r}}={ }^{n} C_{r}-1+{ }^{n} C_{r}\right]\)
    \(\Rightarrow \quad \frac{1}{2} n(n-1)=21\)
    \(\Rightarrow \quad n=-6\) or 7
    As \(n\) is a positive integer, \(n=7\).
  • Question 2
    4 / -1

    In an isosceles triangle ABC, AB = AC. If vertical angle A measures 20°, then what is the value of a3+ b3?

    Solution
    \(\because \angle A=20^{\circ}\)
    \(\angle B=\angle C=80^{\circ}\)
    Then, \(b=c\)
    \(\therefore \frac{a}{\sin 20^{\circ}}=\frac{b}{\sin 80^{\circ}}=\frac{c}{\sin 80^{\circ}}\)
    Or \(\frac{a}{\sin 20^{\circ}}=\frac{b}{\cos 10^{\circ}} \Rightarrow a=2 b \sin 10^{\circ}\)
    \(\therefore a^{3}+b^{3}=8 b^{3} \sin ^{3} 10^{\circ}+b^{3}=b^{3}\left\{2\left(4 \sin ^{3} 10^{\circ}\right)+1\right\}=b^{3}\left\{6 \sin 10^{\circ}\right\}=3 a c^{2}\)
    Here, we used \(\sin 3 A=3 \sin A-4 \sin ^{3} A\)
    \(a^{3}+b^{3}=3 b^{2}\left(2 b \sin 10^{\circ}\right)=3 a b^{2}=3 a c^{2}\)
  • Question 3
    4 / -1

    The locus of the midpoint of the portion between the axes of \(x \cos \alpha+y \sin \alpha=p,\) where \(p\) is a constant, is

    Solution
    We have \(\frac{x}{\frac{p}{\cos \alpha}}+\frac{y}{\frac{p}{\sin \alpha}}=1\)
    which gives the coordinates \((\mathrm{p} / \mathrm{cos}, \alpha, 0)\) and \((0, \mathrm{p} / \mathrm{sin} \alpha),\) where the line intersects the \(\mathrm{x}\) -axis and the \(\mathrm{y}\) -axis,
    respectively.
    If \((h, k)\) is the mid-point, then
    \[
    h=p / 2 \cos \alpha, k=p / 2 \sin \alpha
    \]
    so \(\quad(p / 2 h)^{2}+(p / 2 k)^{2}=\cos ^{2} \alpha+\sin ^{2} \alpha=1\)
    \(\Rightarrow \quad 1 / h^{2}+1 / k^{2}=4 / p^{2}\)
    Locus of \((h, k)\) is \(1 / x^{2}+1 / y^{2}=4 / p^{2}\)
  • Question 4
    4 / -1

    If a circle passes through (a, b) and cuts the circle x2 + y2 = 4 orthogonally, then the locus of its centre is

    Solution
    Let the equation of the circle be \(x^{2}+y^{2}-2 g x-2 f y+c=0\) As it passes through (a, b), its equation should be:
    \[
    a^{2}+b^{2}-2 g a-2 f b+c=0
    \]
    since it intersects the circle \(x^{2}+y^{2}=4\) orthogonally,
    \[
    28 \times 0+2 f \times 0=c-4 \Rightarrow c=4
    \]
    and the locus of \((\mathrm{g}, \mathrm{f}),\) the centre, is
    \[
    2 a x+2 b y-\left(a^{2}+b^{2}+4\right)=0
    \]
  • Question 5
    4 / -1

    Solution

  • Question 6
    4 / -1
    If \(g(x)=\int_{0}^{x} \cos ^{4} t d t,\) then \(g(x+\pi)\) equals
    Solution
    \[
    \begin{array}{l}
    g(x+\pi)=\int_{0}^{x+\pi} \cos ^{4} t \mathrm{d} t \\
    =\int_{0}^{\pi} \cos ^{4} t \mathrm{d} t+\int_{\pi}^{x+\pi} \cos ^{4} t \mathrm{d} t \\
    =g(\pi)+I_{1}
    \end{array}
    \]
    \(\operatorname{In} I_{1},\) put \(t=\pi+u,\) so that
    \[
    I_{1}=\int_{0}^{x} \cos ^{4}(\pi+u) \mathrm{d} u=\int_{0}^{x} \cos ^{4} u \mathrm{d} u=g(x)
    \]
    \(\Rightarrow g(x+\pi)=g(x)+g(\pi)\)
  • Question 7
    4 / -1
    \(f(x)=\left\{\begin{array}{ll}x+a & x<0 \\ |x-1| & : x \geq 0\end{array}\right.\) and

    \(g(x)=\left\{\begin{array}{ll}x+1 & : \text { if } x<0 \\ (x-1)^{2}+b & : x \geq 0\end{array}\right.\)

    If gof is continuous, then
    Solution
    \[
    g o f(x)=\left\{\begin{array}{ccc}
    x+a+1 & : & x<-a \\
    (x+a-1)^{2}+b & : & -a \leq x<0 \\
    x^{2}+b & : & 0 \leq x<1 \\
    (x-2)^{2}+b & : & x \geq 1
    \end{array}\right.
    \]
    gof is continuous except possibly at \(x=-a, 0,1\).
    \[
    \lim _{x \rightarrow-a-} f(x)=-a+a+1=1, \text { gof }(-a)=1+b
    \]
    Therefore, \(b+1=1 \Rightarrow b=0\)
    \[
    \begin{aligned}
    \lim _{x \rightarrow 0-} f(x) &=(a-1)^{2}+b \\
    &=(a-1)^{2}, g o f(0)=b=0
    \end{aligned}
    \]
    So \((a-1)^{2}=0 \Rightarrow a=1\)
  • Question 8
    4 / -1

    Let S1, S2, … be squares such that for each n≥ 1, the length of a side of Sn equals the length of a diagonal of Sn + 1. If the length of a side of S1 is 10 cm, then the smallest value of n for which Area (Sn) < 1 is

    Solution
    Let \(a_{n}\) denote the length of a side of \(S_{n} .\) We are given
    Length of a side of \(S_{n}=\) Length of a diagonal of \(S_{n+1}\)
    \[
    \Rightarrow \quad a_{n}=\sqrt{2} a_{n+1} \Rightarrow \frac{a_{n+1}}{a_{n}}=\frac{1}{\sqrt{2}}
    \]
    Thus, \(a_{1}, a_{2}, a_{3}, \ldots\) is a G.P. with first term 10 and common ratio \(1 / \sqrt{2}\). Therefore,
    \[
    a_{n}=10(1 / \sqrt{2})^{n-1}
    \]
    Also, Area \(\left(S_{n}\right)=a_{n}^{2}<1\)
    \(\Rightarrow\left[10(1 / \sqrt{2})^{n-1}\right]^{2}<1 \Rightarrow 100<2^{n-1}\)
    \(\Rightarrow\) smallest possible value of \(n\) is 8
  • Question 9
    4 / -1
    In a triangle \(\mathrm{ABC}, \mathrm{AD}\) is the altitude from A. Given \(b>c, \angle C=23^{\circ}\) and \(A D=\frac{a b c}{b^{2}-c^{2}}\). What is the measure of \(\angle B ?\)
    Solution

    \(\angle C=23^{\circ}\)
    \(\because A D=\frac{a b c}{b^{2}-c^{2}}=\frac{k \sin A b k \sin C}{k^{2}\left(\sin ^{2} B-\sin ^{2} C\right)},\) where \(k=2 R\)
    \(A D=\frac{b \sin A \sin C}{\sin (B+C) \sin (B-C)}=\frac{b \sin A \sin C}{\sin \left(180^{\circ}-A\right) \sin (B-C)}\)
    \(A D=\frac{b \sin C}{\sin (B-C)}=b \sin C(i n \Delta A D C)\)
    \(\sin (B-C)=1\)
    \(B-C=90^{\circ}\)
    \(B=90^{\circ}+23^{\circ}=113^{\circ}\)
  • Question 10
    4 / -1
    \(\operatorname{li}_{x \rightarrow \infty}\left(\frac{x+5}{x+1}\right)^{x+4}\) is equal to
    Solution
    \(\lim _{x \rightarrow \infty}\left(\frac{x+5}{x+1}\right)^{x+4}\)
    \(=\operatorname{Lif}_{x \rightarrow \infty}\left\{\left.\left(1+\frac{4}{x+1}\right)^{\frac{x+1}{4}}\right|^{\frac{4(x+4)}{x+1}}=e^{4}\right.\)
    \(\left(\operatorname{Lit}_{x \rightarrow \infty}\left(1+\frac{4}{x+1}\right)^{\frac{x+1}{4}}=\operatorname{es} x \rightarrow \infty\right.\)
    \(\Rightarrow \frac{4}{x+1} \rightarrow 0\) and \(\left.\operatorname{Lim}_{x \rightarrow \infty} \frac{(x+4) 4}{x+1}=\operatorname{Lt}_{x \rightarrow \infty} \frac{4\left(1+\frac{4}{x}\right)}{1+\frac{1}{x}}=4\right)\)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now