Self Studies

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    4 / -1

    Let f(x) = [x], then f′(1) = ?

    Solution
    \(R f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}\)
    \(=\lim _{h \rightarrow 0} \frac{[1+h]-[1]}{h}=\lim _{h \rightarrow 0} \frac{(1-1)}{h}=0\)
    \(L f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1-h)-f(1)}{-h}=\lim _{h \rightarrow 0} \frac{[1-h]-[1]}{-h}\)
    \(=\lim _{h \rightarrow 0} \frac{0-1}{-h}=\infty\)
    \(R f^{\prime}(1)^{1} L f^{\prime}(1)\)
    So. \(f^{\prime}(1)\) does not exist.
  • Question 2
    4 / -1
    If \(\theta\) be an acute angle and \(7 \sin ^{2} \theta+3 \cos ^{2} \theta=4\), then the value of \(\tan \theta\) is:
    Solution

    Given, \(7 \sin ^{2} \theta+3 \cos ^{2} \theta=4\)

    \(\Rightarrow 7 \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+3=\frac{4}{\cos ^{2} \theta}=4 \sec ^{2} \theta\)

    \(\Rightarrow 7 \tan ^{2} \theta+3=4\left(1+\tan ^{2} \theta\right)\)

    \(\Rightarrow 7 \tan ^{2} \theta-4 \tan ^{2} \theta=4-3\)

    \(\Rightarrow 3 \tan ^{2} \theta=1\)

    \(\Rightarrow \tan ^{2} \theta=\frac{1}{3}\)

    \(\Rightarrow \tan \theta=\frac{1}{ \sqrt{3}}\)

     

  • Question 3
    4 / -1

    Period of cot 3 x - cos (4x + 3) is

    Solution

    Period of cot 3x is π/3 and period of cos (4x + 3) is π/2

    ⇒ L.C.M. is π, hence the answer.

  • Question 4
    4 / -1

    \(\ln \Delta A B C, \frac{b-c \cos A}{c-b \cos A}=\)

    Solution
    \(\frac{b-c \cos A}{c-b \cos A}=\frac{b-\frac{b^{2}+c^{2}-a^{2}}{2 b}}{c-\frac{b^{2}+c^{2}-a^{2}}{2 c}}=\left(\frac{b^{2}+a^{2}-c^{2}}{c^{2}+a^{2}-b^{2}}\right) \frac{c}{b}\)
    \(=\frac{b^{2}+a^{2}-c^{2}}{2 a b} \cdot \frac{2 a c}{c^{2}+a^{2}-b^{2}}=\frac{\cos C}{\cos B}\)
  • Question 5
    4 / -1

    The area of the figure bounded by the curves y = | x - 1 | and y = 3 - | x | is

    Solution
    Required area \(=\int_{-1}^{0}\{(3+x)-(-x+1)\}\)
    \(\left.+\int_{0}^{1}\{(3-x)\}-(-x+1)\right] d x+\int\{(3-x)-(x-1)\} d x=\)
    \(\int_{-1}^{2}(2+2 x) d x+\int_{0}^{1} 2 d x+\int_{0}^{2}(4-2 x) d x\)
    \(=\left[2 x+x^{2}\right]_{-1}^{0}+[2 x]_{0}^{1}+\left[4 x-x^{2}\right]_{1}^{2}\)
    \(-0-(-2+1)+(2-0)+(8-4)-(4-1)=1+2+4-3=4\)
  • Question 6
    4 / -1

    The area bounded by the curve y = 2x - x2 and the straight line y = - x is given by

    Solution

    Required area \(=\int_{0}^{\left(y_{1}-y_{2}\right)} d x\)
    \(=\int_{0}^{3}\left(2 x-x^{2}\right)-(-x) d x=\int_{0}^{3}\left(3 x-x^{2}\right) d x\)
    \(=\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{3}=\frac{27}{2}-9=\frac{9}{2}\)
  • Question 7
    4 / -1

    The area under the curve y = sin 2x + cos 2x between x = 0 and x = π/4 is

    Solution
    Required area
    \(=\int_{0}^{\pi / 4}(\sin 2 x+\cos 2 x) d x\)
    \(=\left[\frac{-\cos 2 x}{2}+\frac{\sin 2 x}{2}\right]_{0}^{\pi / 4}\)
    \(=\frac{1}{2}\left[-\cos \frac{\pi}{2}+\sin \frac{\pi}{2}+\cos 0-\sin 0\right]\)
    \(=1\) sq. unit
  • Question 8
    4 / -1
    \(\int_{0}^{\pi} \sqrt{1-\cos x} d x=\)
    Solution
    \(1=\int_{0}^{\pi} \sqrt{2 \sin ^{2}(x / 2)} d x=\sqrt{2} \int_{0}^{\pi} \sin (x / 2) d x=\sqrt{2} \cdot\left[\frac{-\cos (x / 2)}{(1 / 2)}\right]_{0}^{\pi}\)
    \(=2 \sqrt{2}\left[-\cos \frac{x}{2}+\cos 0\right]=2 \sqrt{2}\)
  • Question 9
    4 / -1

    If \(y=\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right),\) then \(\frac{d y}{d x}=?\)

    Solution
    \(y=\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right)\)
    \(=\tan ^{-1}\left(\frac{\tan x+1}{1-\tan x}\right)=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}+x\right)\right]=\frac{\pi}{4}+x\)
    \(\therefore \frac{d y}{d x}=1\)
  • Question 10
    4 / -1

    The angles of a triangle are (x + 5)°, (2x – 3)° and (3x + 4)°. The value of x is:

    Solution

    Sum of angles of a triangle = 180°

    ∴ x + 5 + 2x – 3 + 3x + 4 = 180°

    ⇒ 6x + 6 = 180°

    ⇒ 6x = 174°

    ⇒ x = 29

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now