
Given:
\(A(0,0), B(0,10), C(8,2)\) and \(D(8,7)\) are the vertices of a quadilateral \(A B C D\).
Here, we have to find the area of quadilateral \(\mathrm{ABCD}\)
Area of quadilateral \(\mathrm{ABCD}=\) Area of \(\triangle \mathrm{ABC}+\) Area of \(\triangle \mathrm{ACD}\)
Let's find out the area of \(\triangle \mathrm{ABC}\).
\(\because \mathrm{A}(0,0), \mathrm{B}(0,10), \mathrm{C}(8,2)\) are the vertices of \(\triangle \mathrm{ABC}\)
As we know that, if \(\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)\) be the vertices of a \(\triangle \mathrm{ABC}\), then area of \(\triangle\)
\(\mathrm{ABC}=\frac{1}{2}\cdot \left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|\)
Area of \(\triangle \mathrm{ABC}=\frac{1}{2} \cdot\left|\begin{array}{ccc}0 & 0 & 1 \\0 & 10 & 1 \\8 & 2 & 1\end{array}\right|\)
Area of \(\triangle \mathrm{ABC}=40\) sq. units
Similarly, let's find out the area of \(\triangle \mathrm{ACD}\)
\(\because \mathrm{A}(0,0), \mathrm{C}(8,2)\) and \(\mathrm{D}(8,7)\)
Area of \(\triangle \mathrm{ACD}=\frac{1}{2} \cdot\left|\begin{array}{lll}0 & 0 & 1 \\8 & 2 & 1 \\8 & 7 & 1\end{array}\right|\)
Area of \(\triangle \mathrm{ACD}=20\) sq. units
Area of quadilateral \(\mathrm{ABCD}=\) Area of \(\triangle \mathrm{ABC}+\) Area of \(\triangle \mathrm{ACD}=[40+20]\) sq. units \(=60 \) sq. units