Self Studies
Selfstudy
Selfstudy

Mathematics Test - 10

Result Self Studies

Mathematics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(A=\left\{x \in \mathbb{C}: x^{4}-1=0\right\}\)

    \(B=\left\{x \in \mathbb{C}: x^{2}-1=0\right\}\)

    \(C=\left\{x \in \mathbb{C}: x^{2}+1=0\right\}\)

    Where \(\mathbb{C}\) is complex plane.

    Solution

    \(A=\{1,-1, i,-i\}\)

    \(B=\{1,-1\}\)

    \(C=\{i,-i\}\)

    Now, \(B \cup C=\{1,-1, i,-i\}=A\)

  • Question 2
    1 / -0

    What is the derivative of |x - 1| at x = 2?

    Solution

    Given:

    \(f(x)=|x-1|\)

    \(\Rightarrow \mathrm{f}(\mathrm{x})=|\mathrm{x}-1|=\left\{\begin{array}{c}-(\mathrm{x}-1), \quad \mathrm{x}<1 \\ \mathrm{x}-1, \quad \mathrm{x} \geq 1\end{array}\right.\)

    We have to find the derivative of \(|x-1|\) at \(x=2\)

    It means we have to take \(\mathrm{f}(\mathrm{x})\) for \(\mathrm{x} \geq 1\)

    Therefore, \(f(x)=x-1\)

    Differentiating with respect to \(\mathrm{x}\), we get

    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=1\)

  • Question 3
    1 / -0

    What is the vector perpendicular to both the vectors î - ĵ and î?

    Solution

    We know that, \(\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{b}}\) be the two vectors and the vector \(\overrightarrow{\mathrm{c}}\) perpendicular to both \(\overrightarrow{\mathrm{a}}\) and \(\overrightarrow{\mathrm{b}}\)

    So, \(\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}\)

    Given:

    Vector \(\overrightarrow{\mathrm{c}}\) is perpendicular to both the vectors \(\hat{\imath}-\hat{\jmath}\) and\(\hat{\imath}\).

    Therefore, \(\overrightarrow{\mathrm{c}}=(\hat{\imath}-\hat{\jmath}) \times \hat{i}\)

    \(=(\hat{\imath} \times \hat{i})-(\hat{\jmath} \times \hat{i})\)

    \(=0-(-\hat{k})\)

    \(=\hat{\mathrm{k}}\)

  • Question 4
    1 / -0

    If \({ }^{9} \mathrm{P}_{5}+5 \cdot{ }^{9} \mathrm{P}_{4}={ }^{10} \mathrm{P}_{\mathrm{r}}\), then \(\mathrm{r}\) is

    Solution

    Given:

    \({ }^{9} \mathrm{P}_{5}+5 \cdot{ }^{9} \mathrm{P}_{4}={ }^{10} \mathrm{P}_{\mathrm{r}}\)

    As we know,

    \(={ }^{n} P_{r}+r \times{ }^{n} P_{r-1}\)

    \(=\frac{n !}{(n-r) !}+r \times \frac{n !}{(n-r+1) ! }\)

    \(=\frac{n !}{(n-r) !}+r \times \frac{n !}{(n-r+1) \times(n-r) !}\)

    \(=\frac{n !}{(n-r) !}\left(1+\frac{r}{(n-r+1)}\right)\)

    \(=\frac{n !}{(n-r) !}\left(\frac{n-r+1+r}{(n-r+1)}\right)\)

    \(=\frac{(n+1) n !}{(n-r+1)(n-r) !}=\frac{(n+1) !}{(n-r+1) !}=n+ {}^1 P_{r}\)

    \(\therefore^{n} P_{r}+r \times{ }^{n} P_{r-1}={ }^{n+1} P_{r}\)

    Now, \({ }^{9} \mathrm{P}_{5}+5 .{ }^{9} \mathrm{P}_{4}={ }^{10} \mathrm{P}_{\mathrm{r}}\)

    Compare with above results, we get

    \(n=9\) and \(r=5\)

  • Question 5
    1 / -0

    The condition that the straight line cx - by + b2 = 0 may touch the circle x2 + y2 = ax + by is: (a, b, c ≠ 0)

    Solution

    Circle is given as x2 + y2 = ax + by

    or, x2 + y2 - ax - by = 0 ...(i)

    Then line is given as cx - by + b2 = 0

    or, \(\mathrm{y}=\left(\frac{\mathrm{c}}{\mathrm{b}} \mathrm{x}+\mathrm{b}\right)\)...(ii)

    Substituting the value of y from (ii) in (i), we get

    \(x^{2}+\left(\frac{c}{b} x+b\right)^{2}-a x-b\left(\frac{c}{b} x+b\right)=0\)

    or, \(\mathrm{x}^{2}+\frac{\mathrm{c}^{2}}{\mathrm{~b}^{2}} \mathrm{x}^{2}+2 \mathrm{cx}+\mathrm{b}^{2}-\mathrm{ax}-\mathrm{cx}-\mathrm{b}^{2}=0\)

    or \(\mathrm{x}^{2}\left(1+\frac{\mathrm{c}^{2}}{\mathrm{~b}^{2}}\right)+\mathrm{x}(\mathrm{c}-\mathrm{a})=0\)

    If it is a perfect square, then c - a = 0 or c = a

  • Question 6
    1 / -0

    The position vectors of the points A and B are respectively 3î - 5ĵ + 2k̂ and î + ĵ - k̂. What is the length of AB?

    Solution

    Given:

    Position vectors of the points \(A\) and \(B\) are respectively \(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{k}\) and \(\hat{\imath}+\hat{\jmath}-\hat{k}\)

    \(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}\)

    \(\Rightarrow \overrightarrow{\mathrm{AB}}=(\hat{\imath}+\hat{\jmath}-\hat{\mathrm{k}})-(3 \hat{\imath}-5 \hat{\jmath}+2 \hat{\mathrm{k}})\)

    \(\overrightarrow{\mathrm{AB}}=-2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}\)

    Now, length of \(\mathrm{AB}=|\overrightarrow{AB}|=\sqrt{x^{2}+y^{2}+z^{2}}\)

    \(\Rightarrow|\overrightarrow{AB}|=\sqrt{(-2)^{2}+6^{2}+(-3)^{2}}=\sqrt{49}=7\)

  • Question 7
    1 / -0

    The order and degree of the differential equation \({x}\left(\frac{{d}^{2} {y}}{{dx}^{2}}\right)^{\frac{2}{3}}={y}^{2}\left(\frac{{dy}}{{dx}}\right)^{\frac{3}{2}}\) is:

    Solution

    We know that,

    The order of a differential equation is the order of the highest derivative appearing in it.

    The degree of a differential equation is the degree of the highest derivative occurring in it, after the equation has been expressed in a form free from radicals as far as the derivatives are concerned.

    Given the differential equation is,

    \(x\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{2}{3}}=y^{2}\left(\frac{d y}{d x}\right)^{\frac{3}{2}}\)

    Taking cube on both sides, we get,

    \({x}^{3}\left(\frac{{d}^{2} {y}}{{dx}^{2}}\right)^{2}={y}^{6}\left(\frac{{dy}}{{dx}}\right)^{\frac{9}{2}}\)

    Taking square on both sides, we get,

    \(x^{6}\left(\frac{d^{2} y}{d x^{2}}\right)^{4}=y^{12}\left(\frac{d y}{d x}\right)^{9}\)

    Highest derivate is \(\frac{{d}^{2} {y}}{{dx}^{2}}\)

    So, the order of the given differential equation \(=2\)

    The power of the highest derivate \(=4\)

    So, the degree of the given differential equation \(=4\)

  • Question 8
    1 / -0

    The number of ways in which 5 men and 3 women are to be seated at a round table so that no two women are to sit together is:

    Solution

    First, arrange 5 men at the round table in \((5-1) !\) ways \(=4 !\)

    Now, women sit on the 5 spaces generated between the men

    This can be done in \({ }^{5} \mathrm{P}_{3}\) ways

    Therefore, the total number of ways \(=4 ! \times{ }^{5} \mathrm{P}_{3}\)

  • Question 9
    1 / -0

    If \(a\) point \((z_1)\) is the reflection of a point \((z_2)\) through the line \((b {\bar{z}}+\bar{b} z=c, b \neq 0)\) in the argand plane, then \((\bar{b} z_2+b \bar{z}_1)\) is equal to:

    Solution

  • Question 10
    1 / -0

    If f(x) = |cos x - sin x|, then f'π6 is equal to:

    Solution

    At \(x=\frac{\pi}{6}, \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\) and \(\sin \frac{\pi}{6}=\frac{1}{2}\)

    \(\Rightarrow \cos x>\sin x\)

    \(\Rightarrow \cos x-\sin x>0\)

    \(\therefore f(x)=|\cos x-\sin x|=\cos x-\sin x\)

    \(\Rightarrow f^{\prime}(x)=-\sin x-\cos x\)

    And, \(\mathrm{f}^{\prime}\left(\frac{\pi}{6}\right)=-\sin \frac{\pi}{6}-\cos \frac{\pi}{6}\)

    \(=-\frac{1}{2}-\frac{\sqrt{3}}{2}\)

    \(=-\frac{1}{2}(1+\sqrt{3})\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now