Given equation \(x e^{x}\).
Let, \(f(x)=x e^{x}\)
Now, differentiate the above equation w.r.t \(x\) and using the property that \(\frac{d}{d x} m n=m \frac{d}{d x} n+n \frac{d}{d x} m\) so we have,
\(\Rightarrow \frac{d}{d x} f(x)=x \frac{d}{d x} e^{x}+e^{x} \frac{d}{d x} x\)
Now, as we know that \(\frac{d}{d x} x^{n}=n x^{n-1}, \frac{d}{d x} e^{x}=e^{x}\) so we have,
\(\Rightarrow f^{\prime}(x)=x e^{x}+e^{x}(1)\)
\(\Rightarrow f^{\prime}(x)=e^{x}+x e^{x}\)
Now, again differentiate it w.r.t \(x\) we have,
\(\Rightarrow \frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(e^{x}+x e^{x}\right)\)
\(\Rightarrow \frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} e^{x}+\frac{d}{d x} x e^{x}\)
\(\Rightarrow f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}\)
\(\Rightarrow f^{\prime \prime}(x)=2 e^{x}+x e^{x}\)
Now, again differentiate w.r.t \(x\) we have,
\(\Rightarrow \frac{d}{d x} f^{\prime \prime}(x)=\frac{d}{d x}\left(2 e^{x}+x e^{x}\right)\)
\(\Rightarrow f^{\prime \prime \prime}(x)=2 e^{x}+e^{x}+x e^{x}\)
\(\Rightarrow f^{\prime \prime \prime}(x)=3 e^{x}+x e^{x}\)
Similarly,
\(\Rightarrow f^{n}(x)=n e^{x}+x e^{x} \quad \quad \ldots \ldots \ldots .(1)\)
Now, according to the question we have to find out the condition when \(n^{\text {th }}\) derivative vanishes.
\(\Rightarrow f^{n}(x)=0\)
So, from equation (1) we have,
\(\Rightarrow f^{n}(x)=n e^{x}+x e^{x}=0\)
\(\Rightarrow n e^{x}+x e^{x}=0\)
\(\Rightarrow x e^{x}=-n e^{x}\)
\(\Rightarrow x=-n\)
So, this is the required condition.