Self Studies
Selfstudy
Selfstudy

Mathematics Test - 11

Result Self Studies

Mathematics Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(f(x)=\frac{x^{2}-9}{x^{2}-2 x-3}, x \neq 3\) is continuous at \(x=3,\) then which one of the following is correct?

    Solution

    If f(x) is continuous at x = 3

    Thenlimx3-fx=f3=limx3+fx

    Herefx=x2-9x2-2x-3=x+3x-3x-3x+1=x+3x-1

    Now,

    limx3-fxlimh0f3-hlimh03-h+33-h+1=limh06-h4-h

    = 6/4 = 3/2 = 1.5

    f3=limx3-fx=1.5

  • Question 2
    1 / -0

    The indefinite integral of \(\sin (x)\) w.r.t \(\cos (x)\) is:

    Solution

    The indefinite integral of function \(f(x)\) with respect to \(g(x)\) is defined as \(\int f(x) d g(x)\).

    So, indefinite integral of \(\sin (x)\) with respect to \(\cos (x)\) is:

    \(=\int \sin (x) d(\cos (x))\)

    To solve this above integral. 

    We have to convert the above equation into \(\int f(x) d x\) this form. 

    For that firstly we have to find the differentiation of \(\cos ({x})\).

    So, we can re-write the above equation as:

    \(=\int \sin (x) \frac{d(\cos (x))}{d x} d x\quad\quad\) [multiplying numerator and denominator by \({dx}]\)

    We know that the \(\frac{d(\cos (x))}{d x}=-\sin (x)\)

    Putting the value of \(\frac{d(\cos (x))}{d x}=-\sin (x)\)

    We get:

    \(=\int \sin (x) \times(-\sin (x)) \times d x\)

    \(=\int-\sin ^{2}(x) d x\)

    We know that: \(\left(\cos (2 x)=1-2 \sin ^{2}(x)\right)\) and \(\sin ^{2}(x)=\frac{1-\cos (2 x)}{2}\)

    Now, putting the value of \(\sin ^{2}(x)\) we get,

    \(=-\int\left(\frac{1-\cos (2 x)}{2}\right) d x\)

    \(=-\frac{1}{2} \int(1-\cos (2 x)) d x\)

    \(=-\frac{1}{2}\left(\int 1 d x-\int \cos (2 x) d x\right)\)

    We know that \(\int \cos (x) d x=\sin (x)\) so,

    \(=-\frac{1}{2}\left(x-\frac{\sin (2 x)}{2}\right)+c\)

    \(=\frac{\sin (2 x)}{4}-\frac{x}{2}+c\)

  • Question 3
    1 / -0
    If \(a\) and \(b\) are two odd positive integers, such that \(a>b\), then the two numbers \(\frac{a+b}{2}\) and \(\frac{a-b}{2}\) are:
    Solution

    Let "a" and "b" are any two odd positive integers. In general form it can be written as \(a=2 m+1\) and \(b=2 n+1\). Where \(m\) and \(n\) are any positive integers.
    Consider, \(\frac{a+b}{2}=\frac{(2 m+1)+(2 n+1)}{2}\) \(=\frac{2 m+2 n+2}{2}\) \(=(m+n+1)\). Here the results are positive integers.
    Now, \(\frac{a-b}{2}\) \(=\frac{(2 m+1)-(2 n+1)}{2}\) \(=\frac{2 m-2 n}{2}=(m-n)\)
    But \(a>b\) \(\Rightarrow (2 m+1)>(2 n+1)\) \(\Rightarrow m>n\) or \(m-n>0\) \(\Rightarrow \frac{a-b}{2}>0\) Hence, \(\frac{a-b}{2}\) is also a positive integer.
    Now, we have to prove that of the numbers \(\frac{a+b}{2}\) and \(\frac{a-b}{2}\) is odd and another is even numbers. Consider, \(\frac{a+b}{2}-\frac{a-b}{2}\)
    \(\frac{a+b-a+b}{2}=\frac{2 b}{2}=b\) Which are odd positive integers as we let it above (equation 1), It is already proved above that \(\frac{a+b}{2}\) and \(\frac{a-b}{2}\) are positive integers (equation 2)
    And we know that the difference between an odd number and even number is always an odd number.
    From (equation 1 ) and (equation 2 ) we can conclude that one of the integers \(\frac{a+b}{2}\) and \(\frac{a-b}{2}\) is even and other is odd.

  • Question 4
    1 / -0

    The equation of the lines through \((1,1)\) and making angles of \(45^{\circ}\) with the line \(x+y=0\) are:

    Solution

    Let \(m\) be the slope of required line.

    \(\therefore\left|\frac{m-(-1)}{1+m(-1)}\right|=1\)

    \(\Rightarrow \frac{m+1}{1-m}=\pm 1\)

    \(\Rightarrow m+1=1-m\)

    and \(m+1=-1+m\)

    \(\Rightarrow m=0\) and \(m=\infty\)

    \(\therefore\) Equation of line through \((1,1)\) is \(y-1=0, x-1=0\)

    Thus, option \(x-1=0, y-1=0\) is correct.

  • Question 5
    1 / -0

    If the standard deviation of n elements of the series \({x}_{1}, {x}_{2}, {x}_{3} \ldots \ldots .,{x}_{{n}}\) is \(\sigma\), then find the variance of the series \({ax}_{1}, {ax}_{2}, {ax}_{3} \ldots \ldots ., {ax}_{{n}}\) is:

    Solution

    Given Standard deviation of series \(x_{1}, x_{2}, x_{3} \ldots \ldots ., x_{n}\) is \(\sigma\)

    \(\frac{1}{n} \sqrt{\sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\sigma\)

    Where \(\bar{x}=\frac{x_{1}+x_{2}+x_{3} \ldots \ldots+x_{n}}{n}\)

    Variance of this series \(=\frac{1}{n} \sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sigma^{2}\)

    Now for the series \(\mathrm{ax}_{1}, \mathrm{ax}_{2}, \mathrm{ax}_{3} \ldots \ldots . ., \mathrm{ax}_{\mathrm{n}}\)

    Mean \(=\mathrm{a}\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \ldots \ldots+\mathrm{x}_{\mathrm{n}}}{\mathrm{n}}\right)=\mathrm{a} \overline{\mathrm{x}}\)

    Variance \(=\frac{1}{n} \sum_{1}^{n}\left(a x_{i}-a \bar{x}\right)^{2}\)

    \(\mathrm{V}=\frac{\mathrm{a}^{2}}{\mathrm{n}} \sum_{1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}\)

    \(V=a^{2} \times\left[\frac{1}{n} \sum_{1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]\)

    \(V=a^{2} \sigma^{2}\)

  • Question 6
    1 / -0

    What is \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin x| d x\) equal to?

    Solution

    We know that,

    \(\int_{a}^{c} f(x)=\int_{a}^{b} f(x)+\int_{b}^{c} f(x)\)

    \(f(x)=|\sin x|\)

    \(f(x)=-\sin x,-\frac{\pi} 2 \leq q x<0\) and

    \(f(x)=\sin x, 0 \leq q x<\frac{\pi}2\)

    Given:

    \(=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\sin x| d x\)

    \(=\int_{-\frac{\pi}{2}}^{0}-\sin x d x+\int_{0}^{\frac{\pi}{2}} \sin x d x\)

    \(=[\cos x]_{\frac{-\pi}{2}}^{0}+[-\cos x]_{0}^{\frac{\pi}{2}}\)

    \(=1-0+(0-(-1))\)

    \(=1+1\)

    \(=2\)

  • Question 7
    1 / -0
    Two sets \(\mathrm{A}\) and \(\mathrm{B}\) are defined as follows
    \(\mathrm{A}=\left\{(x, y): y=e^{2 x}, x \in \mathrm{R}\right\}\)
    \(\mathrm{B}=\left\{({x}, {y}): {y}={x}^{2}, \mathrm{x} \in \mathrm{R}\right\}\), then:
    Solution
    \(A=\left\{(x, y): y=e^{2 x}, x \in R\right\}\)
    \(\mathrm{B}=\left\{({x}, \mathrm{y}): {y}={x}^{2}, {x} \in \mathrm{R}\right\}\)
    then, \(\mathrm{A}=\left(\mathrm{e}^{0}, \mathrm{e}^{1}, \mathrm{e}^{2}, \ldots ., \mathrm{e}^{\infty}\right)\)
    \(\mathrm{B}=\left(1, \mathrm{e}^{1}, \mathrm{e}^{2}, \ldots \ldots\right)\)
    \(\mathrm{B}=(0,1,4, \ldots . .)\)
    \(\therefore \mathrm{A} \subset \mathrm{B}\)
  • Question 8
    1 / -0

    Ifα andβ are the roots of the equationax2+2bx+c=0 then find the value ofαβ+βα

    Solution

    The given equation is,

    ax2+2bx+c=0

    Here, addition of roots=α+β=2ba

    Multiplication of roots=αβ=ca

    αβ+βα=α2+β2αβ

    =(α+β)22αβαβ

    =4b2a22caca

    =4b22acac

  • Question 9
    1 / -0

    The \(n^{t h}\) derivative of \(x e^{x}\) vanishes when:

    Solution

    Given equation \(x e^{x}\).

    Let, \(f(x)=x e^{x}\)

    Now, differentiate the above equation w.r.t \(x\) and using the property that \(\frac{d}{d x} m n=m \frac{d}{d x} n+n \frac{d}{d x} m\) so we have,

    \(\Rightarrow \frac{d}{d x} f(x)=x \frac{d}{d x} e^{x}+e^{x} \frac{d}{d x} x\)

    Now, as we know that \(\frac{d}{d x} x^{n}=n x^{n-1}, \frac{d}{d x} e^{x}=e^{x}\) so we have,

    \(\Rightarrow f^{\prime}(x)=x e^{x}+e^{x}(1)\)

    \(\Rightarrow f^{\prime}(x)=e^{x}+x e^{x}\)

    Now, again differentiate it w.r.t \(x\) we have,

    \(\Rightarrow \frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(e^{x}+x e^{x}\right)\)

    \(\Rightarrow \frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} e^{x}+\frac{d}{d x} x e^{x}\)

    \(\Rightarrow f^{\prime \prime}(x)=e^{x}+e^{x}+x e^{x}\)

    \(\Rightarrow f^{\prime \prime}(x)=2 e^{x}+x e^{x}\)

    Now, again differentiate w.r.t \(x\) we have,

    \(\Rightarrow \frac{d}{d x} f^{\prime \prime}(x)=\frac{d}{d x}\left(2 e^{x}+x e^{x}\right)\)

    \(\Rightarrow f^{\prime \prime \prime}(x)=2 e^{x}+e^{x}+x e^{x}\)

    \(\Rightarrow f^{\prime \prime \prime}(x)=3 e^{x}+x e^{x}\)

    Similarly,

    \(\Rightarrow f^{n}(x)=n e^{x}+x e^{x} \quad \quad \ldots \ldots \ldots .(1)\)

    Now, according to the question we have to find out the condition when \(n^{\text {th }}\) derivative vanishes.

    \(\Rightarrow f^{n}(x)=0\)

    So, from equation (1) we have,

    \(\Rightarrow f^{n}(x)=n e^{x}+x e^{x}=0\)

    \(\Rightarrow n e^{x}+x e^{x}=0\)

    \(\Rightarrow x e^{x}=-n e^{x}\)

    \(\Rightarrow x=-n\)

    So, this is the required condition.

  • Question 10
    1 / -0

    If \(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})\) be twice differential functions on \([0,~2]\) satisfying \(\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{g}^{\prime \prime}(\mathrm{x}), \mathrm{f}^{\prime}(1)\) \(=2 g^{\prime}(1)=4\) and \(f(2)=3 g(2)=9,\) then:

    Solution
    We have \(\mathrm{f}^{\prime \prime}(\mathrm{x})=\mathrm{g} "(\mathrm{x}) .\)
    On integration,
    \(\Rightarrow\)\(\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+\mathrm{C} \ldots\). (i)
    Putting \(\mathrm{x}=1,\)
    \(\Rightarrow\)\(f^{\prime}(1)=g^{\prime}(1)+C\)
    \( \Rightarrow 4=2+C\)
    \(\Rightarrow C=2\)
    \(\therefore \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}^{\prime}(\mathrm{x})+2\)
    Integrating with respect to \(x,\)
    \(\Rightarrow\)\(f(x)=g(x)+2 x+c_{1}\)
    Putting \(\mathrm{x}=2\),
    \(\Rightarrow\)\(f(2)=g(2)+4+c_{1}\)
    \( \Rightarrow 9=3+4+c_{1}\)
    \( \Rightarrow c_{1}=2\)
    \(\therefore \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+2 \mathrm{x}+2\).
    \(\Rightarrow\)\(|f(x)-g(x)|<2\)
    \( \Rightarrow|2 x+2|<2\)
    \( \Rightarrow|x+1|<1\)
    \( \Rightarrow\) \(\mathrm{f}(2)=\mathrm{g}(2)\)
    \( \Rightarrow \mathrm{x}=-1\)
    \(\Rightarrow\)\(f(x)-g(x)=2 x\) has no solution.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now