Self Studies
Selfstudy
Selfstudy

Mathematics Test - 12

Result Self Studies

Mathematics Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Three persons \({P}, {Q}\) and \({R}\) independently try to hit a target. If the probabilities of their hitting the target are \(\frac{3}{4}, \frac{1}{2}\) and \(\frac{5}{8}\) respectively, then the probability that the target is hit by \({P}\) or \({Q}\) but not by \({R}\) is:

    Solution

    We have to find find probability when, P-hits, Q-hits

    R-does not hits=\(PQ ^{\prime} R ^{\prime}+ P ^{\prime} QR R ^{\prime}+ PQR\)

    \(=\frac{3}{4} \times \frac{1}{2} \times \frac{3}{8}+\frac{1}{4} \times \frac{1}{2} \times \frac{3}{8}+\frac{3}{4} \times \frac{1}{2} \times \frac{3}{8}\)

    \(=\frac{9+3+9}{64}=\frac{21}{64}\).

  • Question 2
    1 / -0
    Solution to the equation \(x^{4}-2 x^{2} \sin ^{2} \frac{\pi x}{2}+1=0\) is:
    Solution

    The given equation \(x^{4}-2 x^{2} \sin ^{2} \frac{\pi x}{2}+1=0\)

    On solving, we get-

    \(\left(x^{2}-\sin ^{2} \frac{\pi x}{2}\right)^{2}+1-\sin ^{4} \frac{\pi x}{2}=0\)

    So, \(\left(x^{2}-\sin ^{2} \frac{\pi x}{2}\right)^{2}=0\) and \(1-\sin ^{4} \frac{\pi x}{2}=0\)

    So, \(1-\sin ^{4} \frac{\pi x}{2}=0 \Rightarrow \frac{\pi x}{2}=(2 n+1) \frac{\pi}{2}\)

    So, \(x=2 n+1\)

    \(\left(x^{2}-\sin ^{2} \frac{\pi x}{2}\right)^{2}=0\)

    \((2 n+1)^{2}-1=0\)

    \(n=0,-1\)

    \(x=1,-1\)

  • Question 3
    1 / -0

    If two vectors \(\vec{a}\) and \(\vec{b}\) are such that \(|\vec{a}|= 2, |\vec{b}|=3\) and \(\vec{a}\cdot\vec{b} = 4\) then find \(|\vec{a}-\vec{b}|\).

    Solution

    We know that,\(|\vec{a}-\vec{b}|^{2}=(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})\)

    \(=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{a}+\vec{b} \cdot \vec{b}\)

    \(=|\vec{a}|^{2}-2(\vec{a} \cdot \vec{b})+|\vec{b}|^{2}\)

    \(=(2)^{2}-2(4)+(3)^{2}\)

    So, \(|\vec{a}-\vec{b}|=\sqrt{5}\)

  • Question 4
    1 / -0

    The equation of circle which passes through the origin and cuts off intercepts 5 and 6 from the positive parts of the \(x\) axis and \(y\) -axis respectively is \(\left(x-\frac{5}{2}\right)^{2}+(y-3)^{2}=\lambda\), where \(\lambda\) is:

    Solution

    From figure, we have

    \(P=5, O Q=6\)

    and \(O M=\frac{5}{2}, C M=3\)

    \(\therefore\) ln \(\Delta O M C, O C^{2}=O M^{2}+M C^{2}\)

    \(\Rightarrow  O C^{2}=\left(\frac{5}{2}\right)^{2}+(3)^{2} \Rightarrow O C=\frac{\sqrt{61}}{2}\)

    Thus, the required circle has its centre \(\left(\frac{5}{2}, 3\right)\)

    and radius \(\frac{\sqrt{61}}{2}\).

    So, its equation is \(\left(x-\frac{5}{2}\right)+(y-3)^{2}=\left(\frac{61}{4}\right)\).

    Thus, \(\lambda=\frac{61}{4}\)

  • Question 5
    1 / -0

    The solution of the matrix equation \(\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 6 \\ 2\end{array}\right]\) is:

    Solution

    The system of linear non-homogeneous equations in matrix form is written as:

    \(A X=B\)

    Let, A be a \(3 \times 3\) matrix:

    \(A =\left[\begin{array}{lll} a _{11} & a _{12} & a _{13} \\ a _{21} & a _{22} & a _{23} \\ a _{31} & a _{32} & a _{33}\end{array}\right], X =\left[\begin{array}{l} x _{1} \\ x _{2} \\ x _{3}\end{array}\right], B =\left[\begin{array}{l} b _{1} \\ b _{2} \\ b _{3}\end{array}\right]\)

    \(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}\)

    \(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}\)

    \(a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}\)

    The set of values \(x_{1}, x_{2}, x_{3}\) which satisfies the above equations are called the solutions of the system.

    \(\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 6 \\ 2\end{array}\right]\)

    \(2 x-y+3 z=9 \quad \quad \ldots\)(1)

    \(x+y+z=6 \quad \quad \ldots\)(2)

    \(x-y+z=2 \quad \quad \ldots\)(3)

    On solving equation (1), (2), and (3) using the elimination method we will get the values

    \(x = 1, y = 2, z = 3\)

  • Question 6
    1 / -0
    What is the solution to the differential equation \(\frac{dx}{dy}+\frac{y}{x}=0\)?
    Solution

    Given:

    \(\frac{dx}{dy}+\frac{y}{x}=0\)

    On solving, we get-

    \(\Rightarrow xdx=ydy\)

    \(\frac{x^{2}}{2}=\frac{-y^{2}}{2}+c\)

    \(x^{2}+y^{2}=2 c\) or

    \(x^{2}+y^{2}=k\)

  • Question 7
    1 / -0

    What is \(C(n, r)+2 C(n, r+1)+C(n, r+2)\) equal to?

    Solution

    The given problem can be written as,

    \({ }^{n} C_{r}+{ }^{n} C_{r+1}+{ }^{n} C_{r+1}+{ }^{n} C_{r+2}\)

    We know that:

    \({ }^{n} C_{r}=\frac{n !}{r !(n-r) !}\)

    Therefore,

    \({ }^{n} C_{r}+{ }^{n} C_{r+1}+{ }^{n} C_{r+1}+{ }^{n} C_{r+2}\)

    \(=\frac{{n} !}{{r} !({n}-{r})!}+\frac{{n} !}{({r}+1) !({n}-{r}-1) ! }+\frac{{n} !}{({r}+1) !({n}-{r}-1) ! }+\frac{{n} !}{({r}+2) !({n}-{r}-2) ! }\)

    \(=\frac{{n} !}{{r} !({n}-{r}-1) ! }\left[\frac{1}{({n}-{r})}+\frac{1}{({r}+1)}\right]+\frac{{n} !}{({r}+1) !({n}-{r}-2) ! }\left[\frac{1}{({n}-{r}-1)}+\frac{1}{({r}+2)}\right]\)

    \(=\frac{{n} !}{{r} !({n}-{r}-1) ! }\left[\frac{{r}+1+{n}-{r}}{({n}-{r})({r}+1)}\right]+\frac{{n} !}{({r}+1) !({n}-{r}-2) ! }\left[\frac{{r}+2+{n}-{r}-1}{({n}-{r}-1)({r}+2)}\right]\)

    \(=\frac{{n} ! \times({n}+1)}{{r} ! \times({r}+1) \times({n}-{r}-1) \times({n}-{r})}+\frac{{n} !}{({r}+1) !({n}-{r}-2) !} \times \frac{({n}+1)}{({n}-{r}-1)({r}+2)}\)

    \(=\frac{({n}+1) !}{({r}+1) !({n}-{r}) !}+\frac{{n} ! \times(\mathbf{n}+1)}{({r}+2)({r}+1) \times({n}-{r}-1)({n}-{r}-2)}\)

    \(=\frac{({n}+1) !}{({r}+1) !({n}-{r}) !}+\frac{({n}+1) !}{({r}+2) !({n}-{r}-1) !}\)

    \(=\frac{({n}+1) !}{({r}+1) !({n}-{r}-1) !}\left[\frac{1}{{n}-{r}}+\frac{1}{{r}+2}\right]\)

    \(=\frac{({n}+1) !}{({r}+1) !({n}-{r}-1) !}\left[\frac{{n}-{r}+{r}+2}{({r}+2)({n}-{r})}\right]\)

    \(=\frac{({n}+2)({n}+1) !}{({r}+2)({r}+1) !({n}-{r})({n}-{r}-1) !}\)

    \(=\frac{({n}+2) !}{({r}+2) !({n}-{r}) !}\)

    \(=^{{n}+2} {C}_{{r}+2}\)

    \(=C(n+2, r+2)\)

  • Question 8
    1 / -0

    The mean and variance of a binomial distribution are 8 and 4 respectively, then \(p(x = 1)\) is equal to?

    Solution

    mean \(\mu=n p=8\) ...(1)

    variance \(\sigma^{2}=\mathrm{npq}=4\) ..(2)

    Dividing equation (2) by (1), we get

    \(q=\frac{1}{2}\)

    As we know, \(p+q=1\)

    \(\Rightarrow p=1-q=\frac{1}{2}\)

    Put the value of \(n\) in equation (1), we get

    \(n=16\)

    Now,

    \(P(x=1)={ }^{16} C_{1}\left(\frac{1}{2}\right)^{1} \times\left(\frac{1}{2}\right)^{16-1}\)

    \(\Rightarrow 16 \times \frac{1}{2^{16}}\)

    \(\Rightarrow 2^{4} \times \frac{1}{2^{16}}\)

    \(\therefore \frac{1}{2^{12}}\)

  • Question 9
    1 / -0

    Find the value of(cos2pπ+isin2pπ)(cos2qπ+isin2qπ)?

    Solution

    The given equation is,

    =(cos2pπ+isin2pπ)(cos2qπ+isin2qπ)

    =cos2(p+q)π+isin2(p+q)π

    =(cosπ+isinπ)2(p+q)

    =(1+0)2(p+q)

    =(1)2(p+q)=1

  • Question 10
    1 / -0
    The solution of trigonometric equation \(\cos ^{4} x+\sin ^{4} x=2 \cos (2 x+\pi) \cos (2 x-\pi)\) is
    Solution

    Given:

    \(\cos ^{4} x+\sin ^{4} x=2 \cos (2 x+\pi) \cos (2 x-\pi)\)

    On solving, we get-

    \(\Rightarrow\left(\cos ^{2} x+\sin ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x\)

    \(=\cos 4 x+\cos 2 \pi\)

    \(\Rightarrow 1-\frac{1}{2} \sin ^{2} 2 x=\cos 4 x+1\)

    \(\Rightarrow-\frac{1}{2}\left(\frac{1-\cos 4 x}{2}\right)=\cos 4 x\)

    \(\Rightarrow-\frac{1}{4}=\frac{3}{4} \cos 4 x\)

    \(\Rightarrow \cos 4 x=-\frac{1}{3}\)

    \(\Rightarrow \sin 4 x=\frac{2 \sqrt{2}}{3}\)

    Again \(\cos 4 x=-\frac{1}{3}\)

    \(\Rightarrow 1-2 \sin ^{2} 2 x=-\frac{1}{3}\)

    \(\Rightarrow \sin 2 x=\sqrt{\frac{2}{3}}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now