The given problem can be written as,
\({ }^{n} C_{r}+{ }^{n} C_{r+1}+{ }^{n} C_{r+1}+{ }^{n} C_{r+2}\)
We know that:
\({ }^{n} C_{r}=\frac{n !}{r !(n-r) !}\)
Therefore,
\({ }^{n} C_{r}+{ }^{n} C_{r+1}+{ }^{n} C_{r+1}+{ }^{n} C_{r+2}\)
\(=\frac{{n} !}{{r} !({n}-{r})!}+\frac{{n} !}{({r}+1) !({n}-{r}-1) ! }+\frac{{n} !}{({r}+1) !({n}-{r}-1) ! }+\frac{{n} !}{({r}+2) !({n}-{r}-2) ! }\)
\(=\frac{{n} !}{{r} !({n}-{r}-1) ! }\left[\frac{1}{({n}-{r})}+\frac{1}{({r}+1)}\right]+\frac{{n} !}{({r}+1) !({n}-{r}-2) ! }\left[\frac{1}{({n}-{r}-1)}+\frac{1}{({r}+2)}\right]\)
\(=\frac{{n} !}{{r} !({n}-{r}-1) ! }\left[\frac{{r}+1+{n}-{r}}{({n}-{r})({r}+1)}\right]+\frac{{n} !}{({r}+1) !({n}-{r}-2) ! }\left[\frac{{r}+2+{n}-{r}-1}{({n}-{r}-1)({r}+2)}\right]\)
\(=\frac{{n} ! \times({n}+1)}{{r} ! \times({r}+1) \times({n}-{r}-1) \times({n}-{r})}+\frac{{n} !}{({r}+1) !({n}-{r}-2) !} \times \frac{({n}+1)}{({n}-{r}-1)({r}+2)}\)
\(=\frac{({n}+1) !}{({r}+1) !({n}-{r}) !}+\frac{{n} ! \times(\mathbf{n}+1)}{({r}+2)({r}+1) \times({n}-{r}-1)({n}-{r}-2)}\)
\(=\frac{({n}+1) !}{({r}+1) !({n}-{r}) !}+\frac{({n}+1) !}{({r}+2) !({n}-{r}-1) !}\)
\(=\frac{({n}+1) !}{({r}+1) !({n}-{r}-1) !}\left[\frac{1}{{n}-{r}}+\frac{1}{{r}+2}\right]\)
\(=\frac{({n}+1) !}{({r}+1) !({n}-{r}-1) !}\left[\frac{{n}-{r}+{r}+2}{({r}+2)({n}-{r})}\right]\)
\(=\frac{({n}+2)({n}+1) !}{({r}+2)({r}+1) !({n}-{r})({n}-{r}-1) !}\)
\(=\frac{({n}+2) !}{({r}+2) !({n}-{r}) !}\)
\(=^{{n}+2} {C}_{{r}+2}\)
\(=C(n+2, r+2)\)