The coefficient matrix for the given system of equations is:
\(\operatorname{det}(A)=1(10-4)+1(16-20)+1(2-4)=6-4-2=0\)
Therefore, either there is no solution (inconsistent) or there are infinitely many solutions (consistent and dependent).
Let, us convert the augmented matrix into the row echelon form to find its solutions. The augmented matrix is:
\(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 2 & 1 & 4 & \mid & k \\ 4 & 1 & 10 & \mid & k ^{2}\end{array}\right]\)
\(R _{3} \rightarrow R _{3}-4 R _{1}\)
\(R _{2} \rightarrow R _{2}-2 R _{1}\)
\(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 0 & -1 & 2 & \mid & k -2 \\ 0 & -3 & 6 & \mid & k ^{2}-4\end{array}\right]\)
\(R _{3} \rightarrow R _{3}-3 R _{2}\)
\(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 0 & -1 & 2 & \mid & k -2 \\ 0 & 0 & 0 & \mid & k ^{2}-3 k +2\end{array}\right]\)
The rank of both the coefficient matrix and the augmented matrix must be equal for the system to be consistent.
\(\therefore k ^{2}-3 k +2=0\)
\(\Rightarrow k ^{2}-2 k - k +2=0\)
\(\Rightarrow k ( k -2)-( k -2)=0\)
\(\Rightarrow( k -2)( k -1)=0\)
\(\Rightarrow k -2=0\) OR \(k -1=0\)
\(\Rightarrow k =2\) or \(k =1\)