Self Studies
Selfstudy
Selfstudy

Mathematics Test - 13

Result Self Studies

Mathematics Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    How many 4-digit numbers can be formed using digits 1, 2, 3, 4, 7, 9 lying between 3000 and 5000, if repetition of digits is allowed?

    Solution

    Here, we have to form a 4 digit number lying between 3000 and 5000 using digits 1, 2, 3, 4, 7, 9 such that repetition of digits is allowed.

    Unit’s digit can be filled by any one of the given numbers

    ⇒ No. of ways to fill unit’s digit = 6

    Ten’s digit can be filled by any one of the given numbers ⇒ No. of ways to fill ten’s digit = 6

    Hundred’s digit can be filled by any one of the given numbers

    ⇒ No. of ways to fill hundredth digit = 6

    Thousand’s digit can be filled by 3 or 4 only

    ⇒ No. of ways to fill thousand’s digit = 2

    ∴ The no. of ways to form a 4 digit number lying between 3000 and 5000 using digits 1, 2, 3, 4, 7, 9 such that repetition of digits is allowed = 6 × 6 × 6 × 2 = 432

  • Question 2
    1 / -0

    If \(\log x+\log 5=\log x^{2}-\log 14\), the \(x\) is equal to:

    Solution

    We know that: \(\log m+\log n=\log m n\)

    Using the above identity, we get:

    \(\mathrm{LHS}=\log x+\log 5=\log 5 x\)

    We know that: \(\log m-\log n=\log \left(\frac{m}{n}\right)\)

    Using the above identity, we get:

    RHS \(=\log x^{2}-\log 14=\log \left(\frac{x^{2}}{14}\right)\)

    So, we have \(\log 5 x=\log \left(\frac{x^{2}}{14}\right)\)

    Since log \(x\) is a one-one function, we have \(5 x=\frac{x^{2}}{14}\)

    Thus, we have \(x=0\) or \(x=5 \times 14=70\)

    Since log \(x\) is defined for \(x>0\), we have \(x=0\) is rejected.

    Thus, we have \(x=70\) is the solution of the given equation.

  • Question 3
    1 / -0

    If \(\mathrm{X}=\left\{8^{\mathrm{n}}-7 \mathrm{n}-1, \mathrm{n} \in \mathbf{N}\right\}\) and \(\mathrm{Y}=49(\mathrm{n}-1), \mathrm{n} \in \mathbf{N},\) then: \((\) given \(\mathrm{n}>1)\)

    Solution

    Given, 

    \(\mathrm{X}=8^{\mathrm{n}}-7 \mathrm{n}-1\)

    \(=(1+7)^{\mathrm{n}}-7 n-1\)

    \(=1+7 \mathrm{n}+\frac{\mathrm{n}(\mathrm{n}-1)}{2} 7^{2}+\ldots+7^{\mathrm{n}}-7 \mathrm{n}-1\)

    \(=\frac{\mathrm{n}(\mathrm{n}-1)}{2} 7^{2}+\ldots+7^{\mathrm{n}}\)

    \(=49\left[\frac{\mathrm{n}(\mathrm{n}-1)}{2}+\ldots+7^{\mathrm{n}-2}\right]\)

    So, the set \(\mathrm{X}\) will be some specific multiples of \(49\).

    \(\Rightarrow\)\(\mathrm{Y}=49(\mathrm{n}-1)\)

    Therefore, the set \(Y\) will be all multiples of \(49 .\) So, it will contain the elements of \(\mathrm{X}\) too.

    So, \(\mathrm{X} \subset \mathrm{Y}\)

  • Question 4
    1 / -0

    If \(\alpha, \beta\) are the roots of \(a x^{2}+b x+c=0,\) find the value of \((1+\alpha)(1+\beta)\):

    Solution

    If \(\alpha, \beta\) are roots of equation \(a x^{2}+b x+c=0\) then
    \(\alpha+\beta=\frac{-b}{a} ~~\& ~~\alpha \beta=\frac{c}{a}\)
    \((1+\alpha)(1+\beta)\) \(=1+\alpha+\boldsymbol{\beta}+\boldsymbol{\alpha} \boldsymbol{\beta}\) \(=1+\left(\frac{-b}{a}\right)+\frac{c}{a}\) \(=1+\left(\frac{c-b}{a}\right)\)

  • Question 5
    1 / -0

    Consider the function:-

    \begin{equation}f(x)=\left\{\begin{array}{c}
    x^{2} \ln |x|, x \neq 0 \\
    0, x=0
    \end{array}\right.\end{equation}What is f'(0) equal to?
    Solution

    If,

    \(f(x)=\left\{\begin{array}{c}x^{2} \ln |x|, x \neq 0 \\ 0, x=0\end{array}=\left\{\begin{array}{ll}x^{2} \ln x & , x>0 \\ x^{2} \ln (-x) & , x<0 \\ 0, & x=0\end{array}\right.\right.\)

    \(\mathrm{RHD}\)

    \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\)

    \(=\lim _{h \rightarrow 0} \frac{(x+h)^{2} \ln (x+h)-x^{2} \ln x}{h}\)

    \(=\left(\frac{0}{0}\right)\) form

    Applying L' Hospital Rule. \(=\lim _{h \rightarrow 0} \frac{2(x+h) \ln (x+h)+(x+h)^{2} \frac{1}{(x+h)}-2 x \ln x-x^{2} \cdot \frac{1}{x}}{1}\)

    \(=2 x \ln x+x-2 x \ln x-x\)

    \(=0\)

    Similarly, LHD \(=0\)

    \(\Rightarrow \mathrm{f}^{\prime}(0)=0\)

  • Question 6
    1 / -0

    Let \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\). If \(R(z)\) and \(I(z)\) respectively denote the real and imaginary parts of \(z\), then:

    Solution

    \(z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^5+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^5\)
    \(\because\) Euler's form of\(\frac{\sqrt{3}}{2}+\frac{i}{2}=\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=e^{i( \pi / 6)}\)
    \(\frac{\sqrt{3}}{2}-\frac{i}{2}=\cos \left(\frac{-\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)=e^{-i \pi / 6}\)
    So,\( z=\left(e^{i \pi / 6}\right)^5+\left(e^{-i \pi / 6}\right)^5=e^{i \frac{5 \pi}{6}}+e^{-i \frac{5 \pi}{6}}\)\(=\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)+\left(\cos \frac{5 \pi}{6}-i \sin \frac{5 \pi}{6}\right)\) \(\left[\because e^{i \theta}=\cos \theta+i \sin \theta\right]\)
    \(=2 \cos \frac{5 \pi}{6}\)
    \(\therefore I(z)=0\) and \(R(z)=-2 \cos \frac{\pi}{6}=-\sqrt{3}<0\) \(\left[\because \cos \frac{5 \pi}{6}=\cos \left(\pi-\frac{\pi}{6}\right)=-\cos \frac{\pi}{6}\right]\)

  • Question 7
    1 / -0

    Given function \(f(x)=\left(\frac{e^{2 z}-1}{e^{2 z}+1}\right)\) is:

    Solution
    \(\Rightarrow\)\(f(x)=\frac{e^{2 z}-1}{e^{2 z}+1}\)
    \(\Rightarrow\)\(f(-x)=\frac{e^{-2 z}-1}{e^{-2 z}+1}=\frac{1-e^{2 z}}{1+e^{2 z}}\)
    \(\Rightarrow\)\(f(x)=-\frac{e^{2 x}-1}{e^{2 x}+1}=-f(x)\)
    \({f}(\mathrm{x})\) is an odd function.
    Again
    \(\Rightarrow\)\(f(x)=\frac{e^{2 x}-1}{e^{2 x}+1} \Rightarrow f^{\prime}(x)=\frac{4 e^{2 x}}{\left(1+e^{2 x}\right)^{2}}>\)\(0 ~\forall~n \in R\)
    \(\mathrm{f}(\mathrm{x})\) is an increasing function.
  • Question 8
    1 / -0

    Find the angle between the vector \(\vec{a}=\hat{i}+\hat{j}-\hat{k}\) तथा \(\vec{b}=\hat{i}-\hat{j}+\hat{k}\).

    Solution

    The angle \(\theta\) between two vectors \(\vec{a}\) and \(\vec{b}\) is given by:

    \(\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a} \| b|}\)

    Now, \(\vec{a} \cdot \vec{b}=(\hat{i}+\hat{j}-\hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})=1-1-1=-1\)

    \(|\vec{a}|=\sqrt{1^{2}+(1)^{2}+(-1)^{2}}\)\(=\sqrt{3}\)
    \(|\vec{b}|=\sqrt{1^{2}+(-1)^{2}+1^{2}}\)\(=\sqrt{3}\)

    \(|\vec{a}|.|\vec{b}|\) \(=\sqrt{3} \times \sqrt{3}\) = 3

    So, \(\cos \theta=-\frac{1}{3}\)

    Thus, required angle\(\theta=\cos ^{-1}\left(-\frac{1}{3}\right)\)

  • Question 9
    1 / -0

    For what values of \(k\), the equations:

    \(x+y+z=1\)

    \(2 x+y+4 z=k\)

    \(4 x+y+10 z=k^{2}\)

    have a solution?

    Solution

    The coefficient matrix for the given system of equations is:

    \(\operatorname{det}(A)=1(10-4)+1(16-20)+1(2-4)=6-4-2=0\)

    Therefore, either there is no solution (inconsistent) or there are infinitely many solutions (consistent and dependent).

    Let, us convert the augmented matrix into the row echelon form to find its solutions. The augmented matrix is:

    \(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 2 & 1 & 4 & \mid & k \\ 4 & 1 & 10 & \mid & k ^{2}\end{array}\right]\)

    \(R _{3} \rightarrow R _{3}-4 R _{1}\)

    \(R _{2} \rightarrow R _{2}-2 R _{1}\)

    \(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 0 & -1 & 2 & \mid & k -2 \\ 0 & -3 & 6 & \mid & k ^{2}-4\end{array}\right]\)

    \(R _{3} \rightarrow R _{3}-3 R _{2}\)

    \(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 0 & -1 & 2 & \mid & k -2 \\ 0 & 0 & 0 & \mid & k ^{2}-3 k +2\end{array}\right]\)

    The rank of both the coefficient matrix and the augmented matrix must be equal for the system to be consistent.

    \(\therefore k ^{2}-3 k +2=0\)

    \(\Rightarrow k ^{2}-2 k - k +2=0\)

    \(\Rightarrow k ( k -2)-( k -2)=0\)

    \(\Rightarrow( k -2)( k -1)=0\)

    \(\Rightarrow k -2=0\) OR \(k -1=0\)

    \(\Rightarrow k =2\) or \(k =1\)

  • Question 10
    1 / -0

    If \(A=\left[\begin{array}{lll}3 & 1 & 2 \\ 4 & 2 & 1 \\ 2 & a & 1\end{array}\right]\) is a singular matrix, then value of \(a\):

    Solution

    Given,

    \(A=\left[\begin{array}{lll}3 & 1 & 2 \\ 4 & 2 & 1 \\ 2 & a & 1\end{array}\right]\) is a singular matrix.

    Therefore, \(|\mathrm{A}|=0\)

    \(|\mathrm{A}|=\left|\begin{array}{lll}3 & 1 & 2 \\ 4 & 2 & 1 \\ 2 & a & 1\end{array}\right|=0\)

    \(\Rightarrow|A|=3(2-a)-1(4-2)+2(4 a-4)=0\)

    \(\Rightarrow |A|=6-3 a-2+8 a-8=0\)

    \(\Rightarrow |A|=5 a-4=0\)

    \(\Rightarrow 5 a-4=0\)

    \(\Rightarrow {a}=\frac{4}{5}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now