Self Studies
Selfstudy
Selfstudy

Mathematics Test - 14

Result Self Studies

Mathematics Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(\alpha, \beta\) are the roots of \(a x^{2}+b x+c=0,\) find the value of \(\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}\):

    Solution

    Given \(\alpha, \beta\) are the roots of \(a x^{2}+b x+c=0,\)
    \(\alpha+\beta=\frac{-b}{a},\alpha.\beta=\frac{c}{a}\)
    \(\frac{1}{a \alpha+b}+\frac{1}{a \beta+b}\) \(=\frac{1}{a \alpha-a(\alpha+\beta)}+\frac{1}{a \beta-a(\alpha+\beta)}\)
    \(\Rightarrow {b}=-{a}({\alpha}+{\beta})\) \(=\frac{1}{a \alpha-a \alpha-a \beta}+\frac{1}{a \beta-a \alpha-a \beta}\) \(=-\frac{1}{a}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)\) \(=\frac{-1}{a}\left(\frac{-b}{c}\right)\) \(=\frac{{b}}{{a c}}\)

  • Question 2
    1 / -0

    Find the vector along the sum of the vectors\(\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}\) and \(\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}\).

    Solution

    The sum of the given vector,

    \(\vec{a}+\vec{b}=\vec{c}\)

    \(=(2 \hat{i}+2 \hat{j}-5 \hat{k})\) + \((2 \hat{i}+\hat{j}+3 \hat{k})=\vec{c}\)

    Or \(\vec{c}=4 \hat{i}+3 \hat{j}-2 \hat{k}\)

    And \(\quad|\vec{c}|=\sqrt{4^{2}+3^{2}+(-2)^{2}}=\sqrt{29}\)

    Therefore, the required unit vector,

    \(\vec{c}=\frac{1}{|\vec{c}|} \vec{c}=\frac{1}{\sqrt{29}}(4 \hat{i}+3 \hat{j}-2 \hat{k})=\frac{4}{\sqrt{29}} \hat{i}+\frac{3}{\sqrt{29}} \hat{j}-\frac{2}{\sqrt{29}} \hat{k}\)

  • Question 3
    1 / -0

    What is the most probable number of successes in 10 trials with probability of success \(\frac{2}{3}\)?

    Solution

    Given, probability of success \(\frac{2}{3}\) and number of trials is 10.

    Consider, the most probable number of successes in 10 trials with probability of success \(\frac{2}{3}\) is n.

    Now, \(\mathrm{n}=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\ldots\) ( 10 times)

    \(\mathrm{n}=\frac{2}{3} \times 10\)

    \(\Rightarrow \mathrm{n}=6.67\)

    \(\Rightarrow \mathrm{n}=7\)

    The most probable number of successes in 10 trials with probability of success \(\frac{2}{3}\) is 7.

  • Question 4
    1 / -0

    \(3 \tan ^{-1} x+\cot ^{-1} x=\pi\) then \(x\) equal to:

    Solution

    Given:

    \(3 \tan ^{-1} x+\cot ^{-1} x=\pi\)

    We know that,

    \(\cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x\)

    Now,

    \(3 \tan ^{-1} x+\left(\frac{\pi}{2}-\tan ^{-1} x\right)=\pi\)

    \(\Rightarrow 2 \tan ^{-1} x+\frac{\pi}{2}=\pi\)

    \(\Rightarrow 2 \tan ^{-1} x=\frac{\pi}{2}\)

    \(\Rightarrow \tan ^{-1} x=\frac{\pi}{4}\)

    \(\Rightarrow x=\tan \frac{\pi}{4}\)

    \(\Rightarrow x=1\)

  • Question 5
    1 / -0

    If \(5 \times^{ n } P _{3}=4 \times^{( n +1)} P _{3}\), find \(n\)?

    Solution

    \({ }^{n} P_{3}=n \times(n-1) \times(n-2)\)

    \({ }^{(n+1)} P_{3}=(n+1) \times n \times(n-1)\)

    Now, \(5 \times n \times(n-1) \times(n-2)=4 \times(n+1) \times n \times(n-1)\)

    or, \(5(n-2)=4(n+1)\)

    or, \(5 n-10=4 n+4\)

    or, \(5 n-4 n=4+10\)

    So, \(n=14\)

  • Question 6
    1 / -0

    The shaded region given below represents the constraints (other than \(x \geq 0, y \geq 0\) ):

    Solution

    Consider a point (2, 0) on the x-axis.

    Substituting \(x=2, y=0\) in \(3 x+12 y=6<400\).

    Hence, one constraints is \(3 x+12 y \leq 400\)

    Again, substituting \(x=2, y=0\) in \(x-4 y=2-0>0\)

    \(\therefore x-4 y \geq 0\) is other constraints and also the third constraint from the figure is \(y \leq 25\).

    So, the correct alternative is \(3 x+12 y \leq 400, y \leq 25, x \geq 4 y\).

  • Question 7
    1 / -0

    What is the number of outcomes when a coin is tossed and then a die is rolled only in case a head is shown on the coin?

    Solution

    When, a coin is tossed

    Outcome = S = {H, T}

    When a die is rolled,

    S = {1, 2, 3, 4, 5, 6}

    Now, a coin is tossed and a die is rolled, and we need only head on the coin

    So, S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6)}

    n(S) = 6

  • Question 8
    1 / -0

    If the matrix \(\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\) is singular, then \(\theta\) is equal to :

    Solution

    A matrix is said to be singular if its determinant is zero

    i.e. for matrix \(A\) to be singular, \(|A|=0\)

    For a singular matrix, the inverse doesn't exist

    Given that, matrix \(\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]\) is singular.

    Then, \(\left|\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right|=0\)

    \(\Rightarrow\left|\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=0\)

    \(\Rightarrow \cos ^2 \theta-\sin ^2 \theta=0\)

    \(\Rightarrow \cos 2 \theta=\cos \frac{\pi}{2}\)

    \(\therefore \theta=\frac{\pi}{4}\)

  • Question 9
    1 / -0

    The roots of the equation3x22x+4=0 are:

    Solution

    The given equation is,

    3x22x+4=0

    On comparing the above equation withax2+bx+c=0,

    a=3,b=2,c=4

    Discriminant,

    b24ac=(2)24×3×4

    =448

    =44(Negative)

    So, the roots are imaginary.

  • Question 10
    1 / -0

    If \(n=(2017) !\), then what is \(\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\frac{1}{\log _{4} n}+\cdots+\frac{1}{\log _{2017} n}\) equal to \(?\)

    Solution

    If n = 2017, then

    \(\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\ldots+\frac{1}{\log _{2017} n} \ldots . .(1)\)

    Now we know that \(\frac{1}{\log _{a} b}=\log _{b}\) a

    \(\therefore\) we can rewrite Equation 1 as

    \(\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\ldots+\frac{1}{\log _{2017} n}\)

    \(=\log _{n} 2+\log _{n} 3+\log _{n} 4+\ldots+\log _{n} 2017\)

    \(=\log _{n}(2.3 .4 \ldots . .2017)\) as \(\left[\log _{a} b+\log _{a} c+\log _{a}(b \times c)\right]\)

    n = (2017)!

    \(\therefore \log _{n}(2.3 .4 \ldots .2017)=\log _{2017 !}(2017) !=1\)

    So,

    \(\frac{1}{\log _{2} n}+\frac{1}{\log _{3} n}+\ldots+\frac{1}{\log _{2017} n}=1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now