Self Studies
Selfstudy
Selfstudy

Mathematics Test - 15

Result Self Studies

Mathematics Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    What is the median of the given data?

    1, 3, 6, 2, 5, 8, 3, 8, 2

    Solution

    Arranging in ascending order,

    1, 2, 2, 3, 3, 5, 6, 8, 8

    Total no of terms = 9 (odd)

    Median\(=\left(\frac{(n + 1)}{2}\right)^{th}\) term

    Median\( = \left(\frac{(9+ 1)}{2}\right)= 5^{th}\) term \(=3\)

  • Question 2
    1 / -0

    Find the numerical value of \(\frac{2}{1+\cot ^{2} \theta}+\frac{4}{1+\tan ^{2} \theta}+2 \sin ^{2} \theta\).

    Solution

    Given that,

    \(\frac{2}{1+\cot ^{2} \theta}+\frac{4}{1+\tan ^{2} \theta}+2 \sin ^{2} \theta\)

    We know that,

    \(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\) and \(\sec ^{2} \theta=1+\tan ^{2} \theta\)

    So,

    \(\frac{2}{\operatorname{cosec}^{2} \theta}+\frac{4}{\sec ^{2} \theta}+2 \sin ^{2} \theta\)

    \(2 \sin ^{2} \theta+4 \cos ^{2} \theta+2 \sin ^{2} \theta\)

    \(4 \sin ^{2} \theta+4 \cos ^{2} \theta=4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4\)

  • Question 3
    1 / -0

    In how many ways can the word 'CORONAVIRUS' be arranged such that all the vowels come together?

    Solution

    Given,

    The word CORONAVIRUS.

    There are 5vowels in the word (A, I,O, O,U) .

    Taking vowels a single group (A, I, O, U) and O repeated two times.

    • The ways of arranging n different things = n!
    • The ways of arranging n things, having r same things and rest all are different =\(\frac{{n} !}{{r} !}\)
    • The no. of ways of arranging the n arranged thing and m arranged things together = n! × m!
    • The number of ways for selecting r from a group of n (n > r) = \({ }^{{n}} {C}_{{r}}\).

    Now to arrangeletters we have (AIOOU), C, R, N, V, R, S

    Vowels can be arranged in \(\frac{5 !}{2 !}\) ways

    Consonent can be arranged in \(\frac{7 !}{2 !}\)ways ('R' appear2 times)

    So, the required arrangement\(=\frac{7 !}{2 !} \times \frac{5 !}{2 !}\)

    =30 × 7! ways

  • Question 4
    1 / -0

    If \(A ^{-1}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 3 \\ 3 & 1 & 6\end{array}\right]=\frac{\operatorname{adj}( A )}{ k }\), then \(k =?\)

    Solution

    From the definition of the inverse of a matrix, \(A^{-1}=\frac{\operatorname{adj}(A)}{|A|}\)

    Therefore, in the given question, \(k=|A|\).

    Using the properties of the determinant of inverse of a matrix, we have:

    \(k =| A |=\frac{1}{\left| A ^{-1}\right|}\)

    Now, \(\left|A^{-1}\right|=1(24-3)+2(9-12)+3(2-12)=21-6-30=-15\)

    Therefore, \(k =-15\)

  • Question 5
    1 / -0
    If the function \(f:(1, \infty) \rightarrow[1, \infty]\) is defined by \(f(x)=2^{x(x-1)}\) then \(f^{-1}(x)\) is
    Solution

    Given :

    A function \(\Rightarrow 4 \log _{2} y \geq 0\) defined by \(f(x)=2^{x(x-1)}\)
    We have to find the value of \(f^{-1}(x)\)
    Let \(y=2^{x(x-1)}\) where \(y \geq 1\) as \(x \geq 1\)
    since, \(x \geqslant 1\)
    \(\Rightarrow f(x) \geqslant 1\)
    \(\Rightarrow y \geqslant 1\)
    Now, taking log with base 2 on both sides, we get
    \(\log _{2} y=\log _{2} 2 x(x-1)\)
    [Using properties of logarithmic function-3 ]
    \(\Rightarrow \log _{2} y=x(x-1) \log _{2} 2\)
    [Using properties of logarithmic function-5 ]
    \(\Rightarrow \log _{2} y=x(x-1)\)
    \(\Rightarrow x^{2}-x-\log _{2} y=0\)
    Which is a quadratic equation in \(x\).
    Thus, using the quadratic formula, we get
    \(x=\frac{1 \pm \sqrt{1+4 \log _{2} y}}{2}\)
    For \( \log _{2} y,~y \geq 1 \)
    \(y=f(x) \in[1, \infty]\)
    \(\Rightarrow 4 \log _{2} y \geq 0 \quad\left[\right.\) Multiplying '\(^{} 4^{}\)' on both sides]
    \(\Rightarrow 1+4 \log _{2} y \geq 1 \quad\) [Adding '1' both sides]
    Taking square root on both sides,
    \(\sqrt{1+4 \log _{2} y} \geq 1\)
    \(\Rightarrow-\sqrt{1+4 \log _{2} y} \leq-1\) [Multiplying '\(^{}-1^{}\)' on both sides. If \(a \geq b\) then \(\left.-a \leq-b\right]\)
    \(\Rightarrow 1-\sqrt{1+4 \log _{2} y} \leq 0\) [Adding '\(^{} 1^{}\)' on both sides \(]\)
    But \(x \geq 1,\) so \(x=\frac{1-\sqrt{1+4 \log _{2} y}}{2} \leqslant 1\) is not possible.
    Therefore, we take \(x=\frac{1}{2}(1+\sqrt{1+4\log _{2} y})\)
    \(\Rightarrow x-f^{-1}(y)=\frac{1}{2}(1+\sqrt{1+4\log _{2} y})\)
    \(\Rightarrow f^{-1}(x)=\frac{1}{2}(1+\sqrt{1+ 4\log _{2} x})\) [Replacing \(y\) by \(\left.x\right]\) 

  • Question 6
    1 / -0

    If \(\frac{\operatorname{cosec} \theta+\sin \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{21}{15}\), then the value of \(\tan \theta\) is equal to-

    Solution

    Given:

    \(\frac{\operatorname{cosec} \theta+\sin \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{21}{15}\)

    Using componendo & dividendo

    \(\frac{\operatorname{cosec} \theta+\sin \theta+\operatorname{cosec}\theta-\sin \theta}{\operatorname{cosec} \theta+\sin \theta-\operatorname{cosec} \theta+\sin \theta}=\frac{21+15}{21-15}\)

    \(\Rightarrow \frac{\operatorname{cosec} \theta}{\sin \theta}=\frac{36}{6}=6\)

    \(\Rightarrow \operatorname{cosec}^{2} \theta=6\)

    We know that,

    \(1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\)

    \(\cot ^{2} \theta=6-1=5\)

    \(\tan \theta=\frac{1}{\sqrt{5}}\)

  • Question 7
    1 / -0

    Solution

  • Question 8
    1 / -0

    The angle of intersection of the curves \(y=4-x^{2}\) and \(y=x^{2}\) is:

    Solution

    Given,

    \(y=4-x^{2} \ldots(1) \)

    \(y=x^{2} \ldots(2)\)

    From equation (1) and (2), we get

    \(4-x^{2}=x^{2} \)

    \(\Rightarrow 2 x^{2}=4 \)

    \(\Rightarrow x=\pm \sqrt{2} \ldots(3)\)

    If \(m_{1}\) is the slope of equation (1) then

    \(m_{1}=\frac{d y}{d x}=\frac{d}{d x}\left(4-x^{2}\right)=0-2 x \)

    \(\Rightarrow m_{1}=-2(\sqrt{2}) \text { [from (3)] }\)

    If \(m_{2}\) is the slope of equation (2) then

    \(m_{2}=\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}\right)=2 x \)

    \(\Rightarrow m_{2}=2 \sqrt{2}\)

    Angle of intersection between (1) and (2) will be

    \(\alpha=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \)

    \(\Rightarrow \alpha=\tan ^{-1}\left|\frac{-2 \sqrt{2}-2 \sqrt{2}}{1+2 \sqrt{2} \times -2 \sqrt{2}}\right| \)

    \(\Rightarrow \alpha=\tan ^{-1}\left|\frac{-4 \sqrt{2}}{-7}\right| \)

    \(\alpha=\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)\)

  • Question 9
    1 / -0

    Given below is a data set of temperatures (in \(\left.{ }^{\circ} \mathrm{C}\right)\):\(-6,-8,-2,3,2,0,5,4,8\)

    What is the range of the data?

    Solution

    The highest value in the data \(=8\)

    The lowest value in the data \(=-8\)

    Difference between the highest and the lowest data \(=8-(-8)=16\)

    \(\therefore\) Required temperature \(=16^{\circ}\)

  • Question 10
    1 / -0

    If \(p, q, r\) and \(s\) are positive real numbers such that \(p+q+r+s=2\), then \(M=(p+q)(r+s)\) satisfies the relation:

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now