Properties of Transpose of a Matrix:
The transpose of the transpose of a matrix is the matrix itself: \(\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}\).
The transposes of equal matrices are also equal: \(\mathrm{A}=\mathrm{B} \Rightarrow {A}^{\prime}=\mathrm{B}^{\prime}\).
The transpose of the sum/difference of two matrices is equivalent to the sumvdifference of their transposes: \((\mathrm{A} \pm \mathrm{B})^{\prime}={A}^{\prime} \pm {B}^{\prime}\)
The transpose of the product of two matrices is equivalent to the product of their transposes in reversed order \((\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}\)
Using the Properties of Transpose of a Matrix:
\(3 \mathrm{~A}+4 \mathrm{~B}^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]\)
\(\Rightarrow\left(3 \mathrm{~A}+4 \mathrm{~B}^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)
\(\Rightarrow 3 \mathrm{~A}^{\prime}+4\left(\mathrm{~B}^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)
\(\Rightarrow 3 \mathrm{~A}^{\prime}+4 \mathrm{~B}=\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]\)\(\quad\)......(1)
Also,
\(2 \mathrm{~B}-3 \mathrm{~A}^{\prime}=\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)\(\quad\)......(2)
Adding equations (1) and (2), we get,
\(\left(3 \mathrm{~A}^{\prime}+4 \mathrm{~B}\right)+\left(2 \mathrm{~B}-3 \mathrm{~A}^{\prime}\right)=\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]+\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)
\(\Rightarrow 6 \mathrm{~B}+0=\left[\begin{array}{cc}7-1 & 0+18 \\ -10+4 & 6+0 \\ 17-5 & 31-7\end{array}\right]\)
\(\Rightarrow 6 \mathrm{~B}=\left[\begin{array}{cc}6 & 18 \\ -6 & 6 \\ 12 & 24\end{array}\right]\)
\(\Rightarrow \mathbf{B}=\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & 4\end{array}\right]\)