Self Studies
Selfstudy
Selfstudy

Mathematics Test - 16

Result Self Studies

Mathematics Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The set of all real numbers \(\mathrm{x}\) for which \(\mathrm{x}^{2}-|\mathrm{x}+2|+\mathrm{x}>0\) is:

    Solution

    The condition given in the question is \(x^{2}-|x+2|+x>0\)

    Two cases are possible:

    Case 1: When \((x+2) \geq 0\)

    Therefore, \(x^{2}-x-2+x>0\)

    Thus, \(x^{2}-2>0\)

    So, either \(x<-\sqrt{2}\) or \(x>\sqrt{2}\).

    Therefore, \(x \in[-2,-\sqrt{2}) \cup(\sqrt{2}, \infty) \quad \ldots \ldots .(1)\)

    Case 2: When \((x+2)<0\) Then \(x^{2}+x+2+x>0\)

    So, \(x^{2}+2 x+2>0\)

    This gives \((x+1)^{2}+1>0\) and this is true for every \(x\)

    Therefore, \(x \leq-2\) or \(x \in(-\infty,-2) \quad \ldots \ldots \ldots\) (2)

    From equations (1) and (2) 

    \(x \in(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)\)

  • Question 2
    1 / -0

    Find the value of \(\mathrm{A}\), if \(\sqrt{3}-3 \sqrt{3 }\tan ^{2} \mathrm{A}=3 \tan \mathrm{A}-\tan ^{3} \mathrm{~A}\)

    Solution

    Given:

    \(\sqrt{3}-3 \sqrt{3 }\tan ^{2} \mathrm{A}=3 \tan \mathrm{A}-\tan ^{3} \mathrm{~A}\)

    \(\Rightarrow \sqrt{3}\left(1-3 \tan ^{2} A\right)=3 \tan A-\tan ^{3} A\)

    \(\Rightarrow \sqrt{3}=\frac{\left(3 \tan \mathrm{A}-\tan ^{3} \mathrm{~A}\right)}{\left(1-3 \tan ^{2} \mathrm{~A}\right)}\)

    \(\Rightarrow \sqrt{3}=\tan 3 \mathrm{~A}\)

    \(\because \tan 60^{\circ}=\sqrt{3}\)

    \(\therefore 3 A=60^{\circ}\)

    \(\Rightarrow A=\frac{60^{\circ}}{3}=20^{\circ}\)

    \(\therefore 20^{\circ}\)

  • Question 3
    1 / -0
    Find the complex number z satisfying the equations \(\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3},\left|\frac{z-4}{z-8}\right|=1\)
    Solution
    \(\left|\frac{z-12}{x-8 i}\right|=\frac{5}{3},\left|\frac{z-4}{x-8}\right|=1\)
    Let \(z=x+i y,\) then \(\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3}\)
    \(\Rightarrow 3|z-12|=5|z-8 i|\)
    \(3|(x-12)+i y|=5 \mid x+(y-8) i|\)
    \(9(x-12)^{2}+9 y^{2}=25 x^{2}+25(y-8)^{2}\) ....(i)
    and\(\left|\frac{z-4}{x-8}\right|=1\)
    \(\Rightarrow|z-4|=|z-8|\)
    \(|x-4+i y|=|x-8+i y|\)
    \((x-4)^{2}+y^{2}=(x-8)^{2}+y^{2}\)\(\Rightarrow x=6\)
    Putting \(x=6\) in (i), we get \(y^{2}-25 y+136=0\)
    \(y=17,8\)
    So, \(z=6+17 i\) or \(z=6+8 i\)
  • Question 4
    1 / -0

    Evaluate the value of \(\int \tan ^{4} x d x\).

    Solution

    Here, we are asked to find the value of \(\int \tan ^{4} x d x\).

    Let, \(I=\int \tan ^{4} x d x\)

    Now, we can write \(\tan ^{4} x\) as \(\tan ^{2} x \cdot \tan ^{2} x\)

    \(\therefore I=\int \tan ^{2} x \cdot \tan ^{2} x d x\)

    Also, we know that \(\tan ^{2} x=\sec ^{2} x-1\)

    \(\therefore I=\int \tan ^{2} x\left(\sec ^{2} x-1\right) d x\)

    \(\Rightarrow I=\int\left(\tan ^{2} x \sec ^{2} x-\tan ^{2} x\right) d x\)

    \(\Rightarrow I=\int \tan ^{2} x \sec ^{2} x d x-\int \tan ^{2} x d x\)

    \(\Rightarrow I=\int \tan ^{2} x \sec ^{2} x d x-\int\left(\sec ^{2} x-1\right) d x\)

    \(\Rightarrow I=\int \tan ^{2} x \sec ^{2} x d x-\int \sec ^{2} x d x+\int d x\)

    \(\Rightarrow I=\int \tan ^{2} x \sec ^{2} x d x-\int \sec ^{2} x d x+x+C\)

    Now, to solve further, 

    Let \(\tan x=t\)

    \(\therefore \sec ^{2} x d x=d t\)

    Now, \( I=\int t^{2} d t-\int d t+x+C\)

    \(\Rightarrow I=\frac{t^{3}}{3}-t+x+C\)

    Now, we shall return back the substituted value \(\tan x=t\) in the above equation. 

    \(\therefore I=\frac{\tan ^{3} x}{3}-\tan x+x+C\)

    Thus, \(\int \tan ^{4} x d x=\frac{\tan ^{3} x}{3}-\tan x+x+C\).

  • Question 5
    1 / -0

    The sum of all odd numbers of two terms will be-

    Solution

  • Question 6
    1 / -0

    If \(3 \mathrm{~A}+4 \mathrm{~B}^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]\) and \(2 \mathrm{~B}-3 \mathrm{~A}^{\prime}=\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\) then \(\mathrm{B}=?\)

    Solution

    Properties of Transpose of a Matrix:

    The transpose of the transpose of a matrix is the matrix itself: \(\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}\).

    The transposes of equal matrices are also equal: \(\mathrm{A}=\mathrm{B} \Rightarrow {A}^{\prime}=\mathrm{B}^{\prime}\).

    The transpose of the sum/difference of two matrices is equivalent to the sumvdifference of their transposes: \((\mathrm{A} \pm \mathrm{B})^{\prime}={A}^{\prime} \pm {B}^{\prime}\)

    The transpose of the product of two matrices is equivalent to the product of their transposes in reversed order \((\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}\)

    Using the Properties of Transpose of a Matrix:

    \(3 \mathrm{~A}+4 \mathrm{~B}^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]\)

    \(\Rightarrow\left(3 \mathrm{~A}+4 \mathrm{~B}^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)

    \(\Rightarrow 3 \mathrm{~A}^{\prime}+4\left(\mathrm{~B}^{\prime}\right)^{\prime}=\left[\begin{array}{ccc}7 & -10 & 17 \\ 0 & 6 & 31\end{array}\right]^{\prime}\)

    \(\Rightarrow 3 \mathrm{~A}^{\prime}+4 \mathrm{~B}=\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]\)\(\quad\)......(1)

    Also,

    \(2 \mathrm{~B}-3 \mathrm{~A}^{\prime}=\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)\(\quad\)......(2)

    Adding equations (1) and (2), we get,

    \(\left(3 \mathrm{~A}^{\prime}+4 \mathrm{~B}\right)+\left(2 \mathrm{~B}-3 \mathrm{~A}^{\prime}\right)=\left[\begin{array}{cc}7 & 0 \\ -10 & 6 \\ 17 & 31\end{array}\right]+\left[\begin{array}{rr}-1 & 18 \\ 4 & 0 \\ -5 & -7\end{array}\right]\)

    \(\Rightarrow 6 \mathrm{~B}+0=\left[\begin{array}{cc}7-1 & 0+18 \\ -10+4 & 6+0 \\ 17-5 & 31-7\end{array}\right]\)

    \(\Rightarrow 6 \mathrm{~B}=\left[\begin{array}{cc}6 & 18 \\ -6 & 6 \\ 12 & 24\end{array}\right]\)

    \(\Rightarrow \mathbf{B}=\left[\begin{array}{cc}1 & 3 \\ -1 & 1 \\ 2 & 4\end{array}\right]\)

  • Question 7
    1 / -0

    If \(x y+y^{2}=\tan x+y\), then \(\frac{d y}{d x}\) is equal to:

    Solution

    First, we will find the derivative of each term, then after we will make \(\frac{d y}{d x}\) as a subject.

    Since, the given equation is \(x y+y^{2}=\tan x+y\).

    Now, differentiate the above equation with respect to \(x\), we get:

    \(\frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(\tan x)+\frac{d y}{d x}\)

    Applying the formula of derivative of product of two functions i.e.,  \(\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}\) on the function \(xy\).

    \(\Rightarrow x \cdot \frac{d y}{d x}+y \cdot 1+2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}\)

    Now, making \(\frac{d y}{d x}\) as subject.

    \(\Rightarrow \frac{d y}{d x}(x+2 y-1)=\sec ^{2} x-y\)

    \(\Rightarrow \frac{d y}{d x}=\frac{\sec ^{2} x-y}{(x+2 y-1)}\)

  • Question 8
    1 / -0

    For all \(x, x^{2}+2 a x+10-3 a>0,\) then the interval in which a lies is:

    Solution
    \(x^{2}+2 ax+10-3 a>0\) for all \(x\)
    \(\therefore\) discriminant is less than 0
    \(\Rightarrow b^{2}-4ac<0\)
    \(\Rightarrow4 a^{2}-4(10-3 a)<0\)
    \(\Rightarrow a^{2}+3 a-10<0\)
    \(\Rightarrow(a+5)(a-2)<0\)
    \(\Rightarrow a \in(-5,2)\)
  • Question 9
    1 / -0

    Three coins are tossed simultaneously. What is the probability that they will fall two heads and one tail?

    Solution

    Given:

    A coin is tossed 3 times

    Sample Space are,

    \(S=\{(H, H, H),(H, H, T),(H, T, H),(H, T, T),(T, H, H),(T, H, T),(T, T, H),(T, T, T)\}\)

    \(\therefore\) Total no of Outcomes \(=8\)

    Taking two heads and one tail,

    Thus, Favourable outcomes are \(=\{(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{H})\}=3\)

    Probability of an event happening \(=\frac{\text { Number of ways it can happen }}{\text { Total number of outcomes }}\)

    Hence the probability that they will fall two heads and one tail \(=\frac{3}{8}\)

  • Question 10
    1 / -0

    Let X be a square matrix. Consider the following two statements on X.

    I. X is invertible.

    II. Determinant of X is non-zero.

    Which one of the following is TRUE?

    Solution

    I implies II means ≡ I → II

    \(X^{-1}=\frac{\operatorname{Adj}(\mathrm{X})}{|X|}\)

    If \(|X| \neq 0\) then \(X^{-1}\)

    \(|X|=\frac{\operatorname{Adj}(X)}{X^{-1}}\)

    If \(X^{-1}\) then \(|X| \neq 0\) also \(\mid\) Adj \(\left.X|=| X\right|^{n-1}\) then \(\mid\) Adj \(X \mid \neq 0\)

    If \(X^{-1}\) then \(|X| \neq 0\)

    I implies II and II implies I

    ∴ Both I and II are equivalent.

    Note:

    \(X^{-1}\) means \(X\) is invertible

    |X| determinant of \(X\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now