In this question, we need to evaluate the given equation. For this, we will use the partial fraction method and apply the defined integral formulae.
Let the given integral be I so, we can write:
\(I=\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\)
Now, by following the partial fraction method, we can write the function \(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) as:
\(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}\)
\(=\frac{A(x+1)(x+2)+B(x+2)+C(x+1)^{2}}{(x+1)^{2}(x+2)}\)
\(=\frac{A\left(x^{2}+3 x+2\right)+B x+2 B+C\left(x^{2}+2 x+1\right)}{(x+1)^{2}(x+2)}\)
\(=\frac{x^{2}(A+C)+x(3 A+B+2 C)+(2 A+2 B+C)}{(x+1)^{2}(x+2)}\)
Now, comparing the coefficients of both sides of the above equation, we get:
\(\Rightarrow A+C=1\quad\quad\)......(i)
\(\Rightarrow 3 A+B+2 C=1\quad\quad\).....(ii)
\(\Rightarrow 2 A+2 B+C=1\quad\quad\).....(iii)
Solving the above equations to determine the value of the constants A, B and C.
From the equation (i), we can write \(A=1-C\quad\quad\)....(iv)
Substituting the value from the equation (iv) in the equation (ii) and (iii), we can write
\(\Rightarrow 3 A+B+2 C=1\)
\(\Rightarrow 3(1-C)+B+2 C=1\)
\(\Rightarrow 3-3 C+B+2 C=1\)
\(\Rightarrow B-C=-2\quad\quad\)..........(v)
Similarly,
\(\Rightarrow 2 A+2 B+C=1\)
\(\Rightarrow 2(1-C)+2 B+C=1\)
\(\Rightarrow 2-2 C+2 B+C=1\)
\(\Rightarrow 2 B-C=-1\quad\quad\).........(vi)
Solving equations (v) and (vi).
From the equation (v), we get:
\(\Rightarrow B-C=-2\)
\(\Rightarrow B=-2+C\quad\quad\)........(vii)
Substituting the value of the equation (vii) in the equation (vi) we get,
\(\Rightarrow 2 B-C=-1\)
\(\Rightarrow 2(-2+C)-C=-1\)
\(\Rightarrow-4+2 C-C=-1\)
\(\Rightarrow C=3\)
Substituting the value of C as 3 in the equation (vii), we get,
\(\Rightarrow B=-2+C\)
\(=-2+3\)
\(=1\)
Again, substituting the value of C as 3 in the equation (iv), we get,
\(\Rightarrow A=1-C\)
\(=1-3\)
\(=-2\)
Therefore, the values of the constant A, B and C are -2, 1 and 3 respectively.
So, the given integral function can be re-written as:
\(\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left(\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}\right) d x\)
\(=\int\left(\frac{-2}{(x+1)}+\frac{1}{(x+1)^{2}}+\frac{3}{(x+2)}\right) d x\)
Now, applying the property of the integration function.
\(\int(A+B+C) d x=\int A d x+\int B d x+\int C d x\) in the above function.
\(\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left(\frac{-2}{(x+1)}+\frac{1}{(x+1)^{2}}+\frac{3}{(x+2)}\right) d x\)
\(=\int \frac{-2}{(x+1)} d x+\int \frac{1}{(x+1)^{2}} d x+\int \frac{3}{(x+2)} d x\)
Again, applying the property of the integration function \(\int \frac{d x}{x}=\ln x\) in the above equation.
\(\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int \frac{-2}{(x+1)} d x+\int \frac{1}{(x+1)^{2}} d x+\int \frac{3}{(x+2)}\)
\(=-2 \ln |x+1|+\int(x+1)^{-2} d x+3 \ln |x+2|+c\)
\(=-2 \ln |x+1|+3 \ln |x+2|-\frac{1}{(x+1)}+c\)
Therefore, we can see that the value of the integral \(\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) is \(-2 \ln |x+1|+3 \ln |x+2|-\frac{1}{(x+1)}+c\) where, \(\tau\) is the integral constant.