Self Studies
Selfstudy
Selfstudy

Mathematics Test - 17

Result Self Studies

Mathematics Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let \(g(x)=1+x-[x]\)
    \(f(x)=\left\{\begin{array}{l}-1, x<0 \\ 0, x=0 \\ 1, x>0\end{array}\right.\) then the value of \(\mathrm{f}(\mathrm{g}(\mathrm{x}))\) is:
    Solution
    Let \(g(x)=1+x-[x] \).....(i)
    \(f(x)=\left\{\begin{array}{l}-1, x<0 \\ 0, x=0 \\ 1, x>0\end{array}\right.\).......(ii)
    We have to find the value of \(f(g(x))\).
    Now,\(g(x)=1+x-[x]\)or \(g(x)=1+\{x\}\)
    Since \(0<\{x\}<1 \Rightarrow g(x)\), is greater than 1 for all \(x \in R\).
    So, \(f(g(x))=1\) [Using (ii)]
  • Question 2
    1 / -0

    Solution

  • Question 3
    1 / -0

    Evaluate the value of the integral \(\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\).

    Solution

    In this question, we need to evaluate the given equation. For this, we will use the partial fraction method and apply the defined integral formulae.

    Let the given integral be I so, we can write:

    \(I=\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\)

    Now, by following the partial fraction method, we can write the function \(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) as:

    \(\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}\)

    \(=\frac{A(x+1)(x+2)+B(x+2)+C(x+1)^{2}}{(x+1)^{2}(x+2)}\)

    \(=\frac{A\left(x^{2}+3 x+2\right)+B x+2 B+C\left(x^{2}+2 x+1\right)}{(x+1)^{2}(x+2)}\)

    \(=\frac{x^{2}(A+C)+x(3 A+B+2 C)+(2 A+2 B+C)}{(x+1)^{2}(x+2)}\)

    Now, comparing the coefficients of both sides of the above equation, we get:

    \(\Rightarrow A+C=1\quad\quad\)......(i)

    \(\Rightarrow 3 A+B+2 C=1\quad\quad\).....(ii)

    \(\Rightarrow 2 A+2 B+C=1\quad\quad\).....(iii)

    Solving the above equations to determine the value of the constants A, B and C.

    From the equation (i), we can write \(A=1-C\quad\quad\)....(iv)

    Substituting the value from the equation (iv) in the equation (ii) and (iii), we can write

    \(\Rightarrow 3 A+B+2 C=1\)

    \(\Rightarrow 3(1-C)+B+2 C=1\)

    \(\Rightarrow 3-3 C+B+2 C=1\)

    \(\Rightarrow B-C=-2\quad\quad\)..........(v)

    Similarly,

    \(\Rightarrow 2 A+2 B+C=1\)

    \(\Rightarrow 2(1-C)+2 B+C=1\)

    \(\Rightarrow 2-2 C+2 B+C=1\)

    \(\Rightarrow 2 B-C=-1\quad\quad\).........(vi)

    Solving equations (v) and (vi).

    From the equation (v), we get:

    \(\Rightarrow B-C=-2\)

    \(\Rightarrow B=-2+C\quad\quad\)........(vii)

    Substituting the value of the equation (vii) in the equation (vi) we get,

    \(\Rightarrow 2 B-C=-1\)

    \(\Rightarrow 2(-2+C)-C=-1\)

    \(\Rightarrow-4+2 C-C=-1\)

    \(\Rightarrow C=3\)

    Substituting the value of C as 3 in the equation (vii), we get,

    \(\Rightarrow B=-2+C\)

    \(=-2+3\)

    \(=1\)

    Again, substituting the value of C as 3 in the equation (iv), we get,

    \(\Rightarrow A=1-C\)

    \(=1-3\)

    \(=-2\)

    Therefore, the values of the constant A, B and C are -2, 1 and 3 respectively.

    So, the given integral function can be re-written as:

    \(\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left(\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)}\right) d x\)

    \(=\int\left(\frac{-2}{(x+1)}+\frac{1}{(x+1)^{2}}+\frac{3}{(x+2)}\right) d x\)

    Now, applying the property of the integration function.

    \(\int(A+B+C) d x=\int A d x+\int B d x+\int C d x\) in the above function.

    \(\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left(\frac{-2}{(x+1)}+\frac{1}{(x+1)^{2}}+\frac{3}{(x+2)}\right) d x\)

    \(=\int \frac{-2}{(x+1)} d x+\int \frac{1}{(x+1)^{2}} d x+\int \frac{3}{(x+2)} d x\)

    Again, applying the property of the integration function \(\int \frac{d x}{x}=\ln x\) in the above equation.

    \(\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int \frac{-2}{(x+1)} d x+\int \frac{1}{(x+1)^{2}} d x+\int \frac{3}{(x+2)}\)

    \(=-2 \ln |x+1|+\int(x+1)^{-2} d x+3 \ln |x+2|+c\)

    \(=-2 \ln |x+1|+3 \ln |x+2|-\frac{1}{(x+1)}+c\)

    Therefore, we can see that the value of the integral \(\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}\) is \(-2 \ln |x+1|+3 \ln |x+2|-\frac{1}{(x+1)}+c\) where, \(\tau\) is the integral constant.

  • Question 4
    1 / -0

    The solution to the inequalityx2+5x6>0 is:

    Solution

    The given equation is-

    x2+5x6>0

    x25x+6<0

    x23x2x+6<0

    x(x3)2(x3)<0

    (x3)(x2)<0

    So, (2,3) is the solution to the given inequality.

  • Question 5
    1 / -0

    Lines \(x=a y+b, z=c y+d\) and \(x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}\) are perpendicular, if:

    Solution

    Given,

    For line I

    \(x=a y+b \)

    \(\Rightarrow y=\frac{x-b}{a} \ldots(1) \)

    \(z=c y+d \)

    \(\Rightarrow y=\frac{z-d}{c} \ldots(2)\)

    From (1) and (2),

    \(\frac{x-b}{a}=y=\frac{z-d}{c}\)

    which can also be written as,

    \(\frac{x-a}{a}=\frac{y-0}{1}=\frac{z-d}{c} \ldots(3)\)

    Similarly,

    For line II

    \(\Rightarrow y=\frac{x-b^{\prime}}{a^{\prime}} \ldots(4) \)

    \(z=c^{\prime} y+d^{\prime} \)

    \(\Rightarrow y=\frac{z-d^{\prime}}{c^{\prime}} \ldots(5)\)

    we can write,

    \(\frac{x-b^{\prime}}{a^{\prime}}=\frac{y-0}{1}=\frac{z-d^{\prime}}{c^{z}} \text {... (6) }\)

    As we know if two lines are perpendicular then \(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)

    From equation (3) and (6), we get \(a a^{\prime}+c c^{\prime}+1=0\)

  • Question 6
    1 / -0

    For the vectors \(\overrightarrow{\mathrm{a}}=-4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}\) and \(\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}},\) if\(\overrightarrow{\mathrm{c}}=\mathrm{m} \overrightarrow{\mathrm{a}}+\mathrm{n} \overrightarrow{\mathrm{b}},\) then the value of \(\mathrm{m}+\mathrm{n}\) is:

    Solution

    Given:

    \(\overrightarrow{\mathrm{a}}=-4 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}\) and\(\overrightarrow{\mathrm{c}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)

    \(\overrightarrow{\mathrm{c}}=\mathrm{ma}+\mathrm{n} \overrightarrow{\mathrm{b}}\)

    \(2 \hat{\imath}+3 \hat{\jmath}=m(-4 \hat{\imath}+2 \hat{j})+n(2 \hat{\imath}+\hat{\jmath})\)

    \(2 \hat{\imath}+3 \hat{\jmath}=(-4 m+2 n) \hat{\imath}+(2 m+n) \hat{\jmath}\)

    Equating the scalar coefficients, we get:

    \(-4 m+2 n=2\) ..(1)

    \(2 m+n=3\) ...(2)

    Multiplying equation (2) by 2 and adding to equation (1), we get:

    \(4 n=8\)

    \(n=2\)

    Using either of the equations above, we also get:

    \(\mathrm{m}=\frac{1}{2}\)

    \(\therefore m+n=2+\frac{1}{2}=\frac{5}{2}\)

  • Question 7
    1 / -0

    The mean of the numbers 1, 4, 9, X, 12, 14, 15 and 16 is 10. Find the mode.

    Solution

    Mean = 10

    Mean \(=\frac{(1+4+9+X+12+14+15+16)}{8}\)

    \(\Rightarrow 10=\frac{(71+x)}{8}\)

    \(\Rightarrow 71+x=80\)

    \(\Rightarrow x=80-71\)

    \(\Rightarrow x=9\)

    The data are 1, 4, 9, 9, 12, 14, 15 and 16.

    ∵ 9 occurs 2 times in th given data.

    ∴ Mode = 9 (maximum frequency)

  • Question 8
    1 / -0

    The angle of elevation of an aeroplane from a point on the ground is \(60^{\circ}\). After flying for 30 seconds, the angle of elevation changes to \(30^{\circ} .\) If the aeroplane is flying at a height of 6000 m, then what is the speed (in m/s) of the aeroplane?

    Solution

  • Question 9
    1 / -0
    If \(A=\{1,2,3,4,5,7,8,9\}\) and \(B=\{2,4,6,7,9\}\) then find the number of proper subsets of \(A \cap B\) ?
    Solution

    Given:

    \(A=\{1,2,3,4,5,7,8,9\}\) and \(B=\{2,4,6,7,9\}\)

    As we know that, \(A \cap B=\{x: x \in A\) and \(x \in B\}\)

    \(\Rightarrow A \cap B=\{2,4,7,9\}\)

    As we can see that, the number of elements present in \(A \cap B=4\) i.e \(n(A \cap B)=4\)

    As we know that; If \(A\) is a non-empty set such that \(n(A)=m\) then the numbers of proper subsets of \(A\) are given by \(2^{m}-1\).

    So, the number of proper subsets of \(A \cap B=2^{4}-1=15\)

  • Question 10
    1 / -0

    What is the number of diagonals of a heptagon?

    Solution

    Given:

    The polygon given is a heptagon.

    Therefore,the no. of sides of the given polygon \({n}=7\).

    As we know that, no. of diagonals that can be drawn by joining the angular points of apolygon having \(n\) sides is given by: \({ }^{n} C_{2}-n=\frac{n \times(n-3)}{2}\)

    \(\Rightarrow \text { No. of diagonals }=\frac{7(7-3)}{2}\)

    Therefore,

    No. of diagonal of heptagon \(=14\)

     
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now