Self Studies
Selfstudy
Selfstudy

Mathematics Test - 18

Result Self Studies

Mathematics Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of the derivative of the function
    \(f(x)=\left\{\begin{array}{l}\tan ^{-1} x, \quad |x| \leq 1 \\ \frac{1}{2}(|x|-1),\quad |x|>1\end{array}\right.\)
    Solution
    We have to find the domain of the function \(f(x)=\left\{\begin{array}{l}\tan ^{-1} x, \quad |x| \leq 1 \\ \frac{1}{2}(|x|-1), \quad|x|>1\end{array}\right.\)
    Using the definition of modulus function , we have
    \(f(x)=\left\{\begin{array}{l}\frac{1}{2}(-x-1), \quad x<-1 \\ \tan^{-1} x, \quad -1 \leqslant x \leqslant 1 \ldots \\ \frac{1}{2}(x-1), \quad x>1\end{array}\right.\)(i)
    It is clear from equation (i) that \(f(x)\) is discontinuous at \(x = 1\) and \(-1\).
    \(\Rightarrow f(x)\) is not differentiable at \(x=-1,1\)
    \([\because\) Not continuous \(\Rightarrow\) not differentiable]
    \(\Rightarrow f(x)\) is differentiable at \(x \in {R}\) all except \(1\) and \(-1\)
    Therefore, domain of \(f(x) \in {R}-\{-1,1\}\).
  • Question 2
    1 / -0

    \(\frac{d}{dx}\left(\frac{x^{4}+x^{2}+1}{x^{2}-x+1}\right)=ax+\mathrm{b},\) what is the value of \(a\) and \(\mathrm{b}\) ?

    Solution

    It is given that

    \(\frac{d}{d x}\left(\frac{x^{4}+x^{2}+1}{x^{2}-x+1}\right)=a x+b\) ----(1)

    Now,

    \(\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)=\left(x^{2}+1\right)^{2}-x^{2} \quad\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]\)

    \(=x^{4}+2 x^{2}+1-x^{2}=x^{4}+x^{2}+1\)

    So, factor of \(x^{4}+x^{2}+1\) is \(\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\)

    \(\mathrm{LHS}=\frac{d}{dx}\left(\frac{x^{4}+^{2}+1}{x^{2}-x+1}\right)\)

    \(=\frac{d}{dx}\left[\frac{\left(x^{2}+x+1\right) \times\left(x^{2}-x+1\right)}{\left(x^{2}-x+1\right)}\right]=\frac{d}{dx}\left(x^{2}+x+1\right)=2 x+1\)

    Compare with equation \(1^{\text {st }}\)

    ∴ a = 2 and b = 1

  • Question 3
    1 / -0

    Calculate the work done by a force \(F=5 i+3 j+2 k\) on a particle when the particle is displaced by \(\vec{S}=3 \hat{i}-\hat{j}+2 \hat{k}\).

    Solution

    Given:

    \(\vec{F}=5 \hat{i}+3 \hat{j}+2 \hat{k}\) displaces a particle by \(\vec{S}=3 \hat{i}-\hat{j}+2 \hat{k}\)

    As we know that, \(W=\) Force \(\cdot\) Displacement \(=\vec{F}. \vec{S}\)

    \( W=\vec{F} \cdot \vec{S}=(5 \hat{i}+3 \hat{j}+2 \hat{k}) .(3 \hat{i}-\hat{j}+2 \hat{k})\)

    \( W=15-3+4=16\) units

  • Question 4
    1 / -0

    How many different salads can be made from onion, cucumber, tomato, and carrot?

    Solution

    The number of ways in which r distinct objects can be selected from a group of \(n\) distinct objects, is: \({ }^{n} C_{r}=\frac{n !}{r !(n-r) !}\)

    \(\mathrm{n} !=1 \times 2 \times 3 \times \ldots \times \mathrm{n}\)

    \(0 !=1\)

    There are a total of 4 ingredients. A salad can be made by using any combination of all or some of these.

    The required number of possibilities is:

    (Number of salads with 1 ingredient) \(+\) (Number of salads with 2 ingredients) \(+(\)Number of salads with 3 ingredients) \(+(\)Numer of salads with 4 ingredients)

    \(={ }^{4} C_{1}+{ }^{4} C_{2}+{ }^{4} C_{3}+{ }^{4} C_{4}\)

    \(=\frac{4 !}{1 !(4-1) !}+\frac{4 !}{2 !(4-2) !}+\frac{4 !}{3 !(4-3) !}+\frac{4 !}{4 !(4-4) !}\)

    \(=4+6+4+1\)

    \(=15\)

  • Question 5
    1 / -0

    If the straight line \(x \cos \alpha+y \sin \alpha=p\) is tangent to the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\), then:

    Solution

    If a line \(y=m x+c .\) (1)

    Touches the ellipse

    \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { then } \)

    \(c^{2}=a^{2} m^{2}+b^{2} \ldots(2)\)

    Given line \(x \cos \alpha+y \sin \alpha=p\)

    Let,

    \(x \cos \alpha+y \sin \alpha=0 \)

    \(\Rightarrow y \sin \alpha=-x \cos \alpha+b \ldots(3) \)

    \(\Rightarrow y=-x \frac{\cos \alpha}{\sin \alpha}+\frac{b}{\sin \alpha}\)

    On comparing with (1), we get

    \(m=-\frac{\cos \alpha}{\sin \alpha} \text { and } c=\frac{b}{\sin \alpha}\)

    Then from equation (2)

    \(c^{2}=a^{2} m^{2}+b^{2} \)

    \(\Rightarrow \frac{b^{2}}{\sin ^{2} \alpha}=a^{2}\left(\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}\right)+b^{2} \)

    \(\Rightarrow b^{2}=a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha\)

    Comparing it with given line, we get

    \(p^{2}=a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha\)

  • Question 6
    1 / -0

    If \(\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}\) and \(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}\) are vectors of magnitude \(\alpha\) then the magnitude of the vector \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|\) is?

    Solution

    Given:

    \(|\overrightarrow{\mathrm{a}}|=\alpha,|\overrightarrow{\mathrm{b}}|=\alpha\) and \(|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=\alpha\)

    As we know,

    \(|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab} \cos \theta}\)

    \( \alpha=\sqrt{\alpha^{2}+\alpha^{2}+2(\alpha)(\alpha) \cos \theta}\)

    \( \alpha^{2}=2 \alpha^{2}+2 \alpha^{2} \cos \theta\)

    \(-1=2 \cos \theta\)

    \( \cos \theta=-\frac{1}{2}\)

    Now,

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ab} \cos \theta}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{\alpha^{2}+\alpha^{2}-2(\alpha)(\alpha) \cos \theta}\)

    \(\because \cos \theta=-\frac{1}{2}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{2 \alpha^{2}-2 \alpha^{2}\left(\frac{-1}{2}\right)}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{2 \alpha^{2}+\alpha^{2}}\)

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|=\sqrt{\mathrm{3}} {\alpha}\)

  • Question 7
    1 / -0

    If \(y=\tan ^{-1}\left(\frac{3-2 \tan \sqrt{x}}{2+3 \tan \sqrt{x}}\right)\) then what is \(\frac{d y}{d x}\) equal to?

    Solution

    We have to find the value of \(\frac{\mathrm{dy}}{\mathrm{dx}}\),

    It is given that \(y=\tan ^{-1}\left(\frac{3-2 \tan \sqrt{x}}{2+3 \tan \sqrt{x}}\right)\)

    \(\Rightarrow y=\tan ^{-1}\left[\frac{2\left(\frac{3}{2}-\tan \sqrt{x}\right)}{2\left(1+\frac{3}{2} \tan \sqrt{x}\right)}\right]=\tan ^{-1}\left[\frac{\left(\frac{3}{2}-\tan \sqrt{x}\right)}{\left(1+\frac{3}{2} \tan \sqrt{x}\right)}\right]=\tan ^{-1}\left(\frac{3}{2}\right)-\tan ^{-1} \tan \sqrt{x}\)

    \(\Rightarrow y=\tan ^{-1}\frac{3}{2}-\sqrt{x} \quad\left(\because \tan ^{-1}(\tan x)=x\right)\)

    Differentiating, both sides, we get

    \(\Rightarrow \frac{d y}{d x}=0-\frac{1}{2 \sqrt{x}}=\frac{-1}{2 \sqrt{x}}\)

  • Question 8
    1 / -0

    The total number of ways in which 5 toys of different colours can be distributed among 3 children, so that, each child gets at least one toy is:

    Solution

    We know that:

    Suppose a set of \(n\) objects has \(n_{1}\) of one kind of object, \(n_{2}\) of a second kind, \(n_{3}\) of a third kind, and so, on with \(n=n_{1}+n_{2}+n_{3}+\ldots+n_{k}\), then the number of distinguishable permutations of the \(n\) objects is:

    \(=\frac{n !}{n_{1} ! \times n_{2} ! \times n_{3} ! \ldots \ldots . . n_{k} !}\)

    If there are m ways to choose an object one and n ways to choose an object two then the number of ways of selecting objects one and two are given by m × n.

    If there are m ways to choose an object one and n ways to choose an object two then the number of ways of selecting objects one or two is given by m + n.

    Given:

    Total no. of toys = 5

    Total no. of children = 3

    Each should get one toy.

    Selection can be done as follows: (2, 2, 1) or (1, 1, 3)

    \(={ }^{5} {C}_{2} \times{ }^{3} {C}_{2} \times{ }^{1} {C}_{1} \times \frac{3 !}{2 !}+{ }^{5} {C}_{1} \times{ }^{4} {C}_{1} \times{ }^{3} {C}_{3} \times \frac{3 !}{2 !}\)

    \(=(10 \times 3 \times 1 \times 3)+(5 \times 4 \times 1 \times 3)\)

    \(=90+60\)

    \(=150\)

  • Question 9
    1 / -0
    \({a}, {b}, {c}\) and \({u}, {v}, {w}\) are the vertices of two triangles such that \(c=(1-r) a+r b\) and \(\omega=(1-r) v+r u\) where \(r\) is a complex number, then the two triangles:
    Solution
    Given:
    \(a, b, c\) and \(u, v, w\) are the vertices of two triangles
    such that \(c=(1-r) a+r b\) and \(w=(1-r) u+r v\)
    Consider,
    \(=\left|\begin{array}{lll}a & u & 1 \\ b & v & 1 \\ c & w & 1\end{array}\right|\)
    Applying \(R_{3} \rightarrow R_{3}-\left[(1-r) R_{1}-r R_{2}\right]\), we get

    \(=\left|\begin{array}{lll}a & u & 1 \\ b & v & 1 \\ c & w & 1\end{array}\right|\)
    \(=0\)
    Therefore, two triangles are similar.
     
  • Question 10
    1 / -0

    Find the set of value of x for which f(x) = cos x − x is decreasing in

    Solution

    It is given that,

    f(x) = cos x – x

    Differentiating with respect to x, we get

    ⇒ f’(x) = -sin x – 1

    As we know that,

    -1 ≤ sin x ≤ 1, for x ∈ R

    ⇒ -1 ≤ -sin x ≤ 1, for x ∈ R

    ⇒ -1 - 1 ≤ -sin x - 1 ≤ 1 - 1, for x ∈ R

    ⇒ -2 ≤ f’(x) ≤ 0, for x ∈ R

    ∴ f’(x) ≤ 0, for x ∈ R

    Hence f(x) is decreasing in x ∈ R or x ∈ (-∞,∞).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now