Self Studies
Selfstudy
Selfstudy

Mathematics Test - 19

Result Self Studies

Mathematics Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    12 points are marked on a circle. How many octagon can be formed joining these points.

    Solution

    The number of ways to select \(r\) things out of \(n\) things is given by \({ }^{n} C_{r}\)

    \({ }^{{n}} {C}_{{r}}=\frac{{n} !}{({n}-{r}) ! \times({r}) !}=\frac{{n} \times({n}-1) \times \ldots({n}-{r}+1)}{{r} !}\)

    \({ }^{{n}} {C}_{{r}}={ }^{{n}} {C}_{{n}-{r}}\)

    Here, the number of points \(=12\)

    Octagon is formed by 8 points.

    \(\therefore\) Number of octagon \(=\) Number of ways of selecting 8 points out of 12

    \(={ }^{12} {C}_{8}\)

    \(={ }^{12} {C}_{4} \quad\left(\because{ }^{{n}} {C}_{{r}}={ }^{{n}} {C}_{{n}-{r}}\right)\)

    \(=\frac{12 !}{4 ! 8 !}\) \(=495\)

  • Question 2
    1 / -0

    If \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-2 x+4=0\), then what is the value of \(\alpha^{3}+\beta^{3}\) ?

    Solution

    Given, \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-2 x+4=0\).

    \(\Rightarrow \alpha+\beta=2\) and \(\alpha \beta=4\)

    Consider, \(\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}+2 \alpha \beta-3 a \beta\right)\)

    \(\left.\Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)\left[(\alpha+\beta)^{2}-3 a \beta\right)\right]\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=(2)\left[(2)^{2}-3(4)\right]\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=(2)(-8)\)

    \(\Rightarrow \alpha^{3}+\beta^{3}=-16\)

    So, if \(\alpha\) and \(\beta\) are the roots of the equation \(x^{2}-2 x+4=0\), then the value of \(\alpha^{3}+\beta^{3}=-16\).

  • Question 3
    1 / -0

    If15Cr:15Cr1=11:5the find the value ofr.

    Solution

    The given equation is,

    15Cr15Cr1=115

    15!r!(15r)!15!(r1)!(15r+1)!=115

    (r1)!(16r)!r!(15r)!=115

    (r1)!(16r)!(15r)!r(r1)!(15r)!=115

    16rr=115

    865r=11r

    16r=80

    r=8016=5

  • Question 4
    1 / -0

    If \(|\overrightarrow{\mathrm{a}}|=10,|\overrightarrow{\mathrm{b}}|=2\) and \(\overrightarrow{\mathrm{a}}. \overrightarrow{\mathrm{b}}=12\), then what is the value of \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}| ?\)

    Solution

    Given: \(|\overrightarrow{\mathrm{a}}|=10,|\overrightarrow{\mathrm{b}}|=2\) and \(\overrightarrow{\mathrm{a}}. \overrightarrow{\mathrm{b}}=12\)

    As we know, \(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{b}}| \cos \theta\)

    \(\Rightarrow 12=10 \times 2 \times \cos \theta\)

    \(\Rightarrow \cos \theta=\frac{12}{20}=\frac{3}{5}\)

    As we know, \(\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}\)

    \(|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}| \cdot|\overrightarrow{\mathrm{b}}| \sin \theta\)

    \(\Rightarrow|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=10 \times 2 \times \frac{4}{5}=16\)

  • Question 5
    1 / -0

    If tan A - tan B = x and cot B - cot A = y, then what is the value of cot (A - B)?

    Solution

    We know that,

    \(\cot (A-B)=\frac{\cot A \times \cot B+1}{\cot B-\cot A}\)

    It is given that,

    \(\tan A-\tan B=x\) and \(\cot B-\cot A=y\)

    \(\because \cot B-\cot A=y\)

    \(\Rightarrow \cot B-\cot A=\frac{1}{\tan B}-\frac{1}{\tan A}=\frac{\tan A-\tan B}{\tan B \times \tan A}=\frac{x}{\tan B \times \tan A}=y\)

    \(\Rightarrow \frac{x}{y}=\tan A \times \tan B\)

    \(\Rightarrow \frac{y}{x}=\cot A \times \cot B\)

    As we know that, \(\cot (A-B)=\frac{\cot A \times \cot B+1}{\cot B-\cot A}\)

    \(\Rightarrow \cot (A-B)=\frac{\frac{y}{x}+1}{y}=\frac{1}{x}+\frac{1}{y}\)

  • Question 6
    1 / -0

    There are 13 points in a plane of which 5 are collinear. Find the number of straight lines obtained by joining these points in pairs.

    Solution

    We know that:

    The number of ways to select \(r\) things out of \(n\) things is given by \({ }^{{n}} C_{{r}}\).

    \({ }^{{n}} {C}_{{r}}=\frac{{n} !}{({n}-{r}) ! \times({r}) !}=\frac{{n} \times({n}-1) \times \ldots({n}-{r}+1)}{{r} !}\)

    Given that:

    There are 13 points in a plane of which 5 are collinear.

    We know that:

    To form a line we have to select two points out of 13 points.

    \(\therefore\) Number of lines\(={ }^{13} {C}_{2}\)

    \(=\frac{13 \times 12}{2 \times 1}\)

    \(=78\)

    Also number of lines out of 5 points\(={ }^{5} {C}_{2}\)

    \(=\frac{5 \times 4}{2 \times 1}\)

    \(=10\)

    But, these 5 points are collinear, and only one line can be formed out of these points.

    ∴ The total number of straight lines obtained by joining these points in pairs.

    \(=78-10+1\)\(\quad\)(We add 1, as one line can be obtained out of 5 collinear points).

    \(=69\)

  • Question 7
    1 / -0

    If \(\mathrm{A}+\mathrm{iB}=\frac{4+2 \mathrm{i}}{1-2 \mathrm{i}}\) where \(\mathrm{i}=\sqrt{-1}\), then what is the value of \(\mathrm{A} ?\)

    Solution

    Let \(A=x_{1}+i y_{1}\) and \(B=x_{2}+i y_{2}\)

    If \(A=B\) then \(x_{1}=x_{2}\) and \(y_{1}=y_{2}\)

    Given: \(\mathrm{A}+\mathrm{iB}=\frac{4+2 \mathrm{i}}{1-2 \mathrm{i}}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=\frac{4+2 \mathrm{i}}{1-2 \mathrm{i}} \times \frac{1+2 \mathrm{i}}{1+2 \mathrm{i}}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=\frac{4+10 \mathrm{i}+4 \mathrm{i}^{2}}{1-4 \mathrm{i}^{2}}\)

    We know i2 = -1

    \(\Rightarrow \mathrm{A}+\mathrm{i} \mathrm{B}=\frac{4+10 \mathrm{i}-4}{1+4}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=\frac{10 \mathrm{i}}{5}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=2 \mathrm{i}\)

    \(\Rightarrow \mathrm{A}+\mathrm{iB}=0+2 \mathrm{i}\)

    Comparing real and imaginary parts, we get,

    ⇒ A = 0

  • Question 8
    1 / -0

    What is the area of the rectangle having vertices \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and \(\mathrm{D}\) with position vectors \(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\) and \(-\hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)?

    Solution

    Let, \(\overrightarrow{\mathrm{OA}}=-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}, \overrightarrow{\mathrm{OB}}=\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)

    \(\overrightarrow{\mathrm{OC}}=\hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\) and \(\overrightarrow{\mathrm{OD}}=-\hat{\mathrm{i}}-\frac{1}{2} \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\)

    \(\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\hat{i}+\frac{1}{2} \hat{\jmath}+4 \hat{k}\right)-\left(-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}\right)\)

    \(=2 \hat{i}\)

    \(|\overrightarrow{A B}|=\sqrt{2^{2}}=2\)

    \(\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=\left(\hat{i}-\frac{1}{2} \hat{\jmath}+4 \hat{k}\right)-\left(-\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}\right)\)

    \(=2 \hat{i}\)

    \(|\overrightarrow{B C}|=\sqrt{2^{2}}=2\)

    Area of rectangle, \(\mathrm{ABCD}=|\mathrm{AB}| \times|\mathrm{BC}|=2 \times 2\)

    \(=4\) square units

  • Question 9
    1 / -0

    Let \(\mathrm{R}\) be the relation in the set \(\mathrm{N}\) given by \(\mathrm{R}=\{(a, b): a=b-2, b>6\} .\) Choose the correct answer.

    Solution

    \(\mathrm{R}=\{(a, b): a=b-2, b>6\}\)
    Now, Since \(b>6,(2,4) \notin \mathrm{R}\).
    Also, as \(3 \neq 8-2,\)
    \( \therefore(3,8) \notin \mathrm{R}\) and, as \(8 \neq 7-2, \)
    \(\therefore(8,7) \notin \mathrm{R}\)
    Now, consider \((6,8) .\)We have \(8>6\) and also, \(6=8-2, \)\(\therefore(6,8) \in \mathrm{R}\)

  • Question 10
    1 / -0

    The equations of normal to the curve \(3 x^{2}-y^{2}=8,\) such that it is parallel to the line \(x+3 y=4,\) is?

    Solution

    Given curve is:

    \(3 x^{2}-y^{2}=8\)

    On differentiating, we get \(6 x-2 y \frac{d y}{d x}=0\)

    \(\Rightarrow \frac{d y}{d x}=\frac{3 x}{y}\)

    Slope of normal \(=\frac{-y}{3 x}\)

    Slope of given line \(=\frac{-1}{3}\)

    A.T.Q.

    \(\frac{-1}{3}=\frac{-y}{3 x}\)

    \(\Rightarrow y=x\)

    Putting the value of y in above equation, we get \(3 x^{2}-y^{2}=8\)

    We get \(x=2,-2\) and \(y=2,-2\)

    Equation of normal

    \(y-y_{1}=\frac{-1}{3}\left(x-x_{1}\right)\)

    On solving, we get \(x+3 y+8=0\) and \(x+3 y-8=0\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now