Self Studies
Selfstudy
Selfstudy

Mathematics Test - 20

Result Self Studies

Mathematics Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The solution of the differential equation \(x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)\) with \(y(1)=1\), is:

    Solution

    We are given the differential equation as \(x \frac{d y}{d x}+2 y=x^{2}\).

    First, we will convert our differential equation into the linear form.

    We have:

    \(x \frac{d y}{d x}+2 y=x^{2}\)

    Dividing both the sides by \(x\), we get,

    \(\Rightarrow \frac{d y}{d x}+\frac{2 y}{x}=x\)

    So, comparing with \(\frac{d y}{d x}+P y=Q\), we get,

    \(P=\frac{2}{x}\) and \(Q=x\).

    Now, to solve further we will find the integrating factor.

    The integrating factor is given as

    \(I.F.=e^{\int P\ d x}\)

    As, \(P=\frac{2}{x}\), so we get,

    \(\Rightarrow I . F.=e^{\int \frac{2}{x} d x}\)

    As, \(\int \frac{1}{x} d x=\log x\), so we get,

    \(\Rightarrow I. F.=e^{2 \log x}\)

    As, \(n \log x=\log x^{n}\), so we get,

    \(\Rightarrow I. F.=e^{\log x^{2}}\)

    Now, we know that,

    \(e^{\log x}=x, e^{\log x^{2}}=x^{2}\), so we get,

    \(\Rightarrow I .F.=x^{2}\)

    Now, we know the solution is given as,

    \(y \times I. F.=\int(Q \times I. F.) d x+C\)

    As, \(I.F.=x^{2}, Q=x\), so we get,

    \(\Rightarrow y x^{2}=\int\left(x \times x^{2}\right) d x\)

    \(\Rightarrow y x^{2}=\int x^{3} d x\)

    As, \(\int x^{n} d x=\frac{x^{n+1}}{n}\), so,

    \(\Rightarrow y x^{2}=\frac{x^{4}}{4}+C\)

    Dividing both the sides by \(x^{2}\), we get,

    \(\Rightarrow y=\frac{x^{2}}{4}+\frac{C}{x^{2}}\)

    Now, we have \(y(1)\) as 1, i.e., \(y(1)=1\).

    So, putting \(x=1\) and \(y=1\), we get,

    \(\Rightarrow 1=\frac{1^{2}}{4}+\frac{C}{1^{2}}\)

    \(\Rightarrow 1=\frac{1}{4}+\frac{C}{1}\)

    \(\Rightarrow 1=\frac{1}{4}+C\)

    Solving for \(C\), we get,

    \(\Rightarrow C=1-\frac{1}{4}=\frac{3}{4}\)

    \(\Rightarrow C=\frac{3}{4}\)

    So, putting it in the value of \(y\), we get,

    \(\Rightarrow y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}\)

     

  • Question 2
    1 / -0

    If\(A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\) satisfies \(A^{n}=A^{n-2}+A^{2}-I\) for \(n \geq 3\), then the value of\(\left|A^{50}\right|\) equal:

    Solution

    Given,

    \(A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\)

    \( \mathrm{A}^{4}=\mathrm{A}^{2}+\mathrm{A}^{2}-\mathrm{I}=2 \mathrm{~A}^{2}-\mathrm{I}\)

    \(= \mathrm{A}^{6}=\mathrm{A}^{4}+\mathrm{A}^{2}-\mathrm{I}=3 \mathrm{~A}^{2}-2 \mathrm{I}\)

    Similarly,

    \(\mathrm {A^{50}=25 A^{2}-24 I}\)

    \( \mathrm{A}^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\)

    \(\therefore \mathrm{A}^{50}=\left[\begin{array}{ccc}25 & 0 & 0 \\ 25 & 25 & 0 \\ 25 & 0 & 25\end{array}\right]-\left[\begin{array}{ccc}24 & 0 & 0 \\ 0 & 24 & 0 \\ 0 & 0 & 24\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]\)

    \(\Rightarrow \mathrm{A}^{50}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 25 & 1 & 0 \\ 25 & 0 & 1\end{array}\right]\)

    \(\therefore\left|\mathrm{A}^{50}\right|=1\)

  • Question 3
    1 / -0

    Let \(f: R-\left\{-\frac{4}{3}\right\} \rightarrow R\) be a function as \(f(x)=\frac{4 x}{3 x+4}\). The inverse of \(f\) is map \(g:\) Range \(f \rightarrow R-\left\{-\frac{4}{3}\right\}\) given by:

    Solution

    Let \(y\) be an arbitrary element of Range \(f\).Then, there exists \(x \in R-\left\{-\frac{4}{3}\right\}\) such that \(y=f(x)\)
    \(\Rightarrow y=\frac{4 x}{3 x+4}\)\(\Rightarrow 3 x y+4 y=4 x\)\(\Rightarrow x(4-3 y)=4 y\)\(\Rightarrow x=\frac{4 y}{4-3 y}\)
    Let us define g: Range \(\mathrm{f} \rightarrow \mathrm{R}-\left\{-\frac{4}{3}\right\}\) as \({g}({y})=\frac{4 {y}}{4-3 {y}}\)
    Now,\(g o f(x)=g(f(x))=g\left(\frac{4 x}{3 x+4}\right)=\frac{4\left(\frac{4 x}{3 x+4}\right)}{4-3\left(\frac{4 x}{3 x+4}\right)}=\frac{16 x}{12 x+16-12 x}=\frac{16 x}{16}=x\) and \(f o g(y)=f(g(y))=f\left(\frac{4 y}{4-3 y}\right)=\frac{4\left(\frac{4 y}{4-3 y}\right)}{3\left(\frac{4 y}{4-3 y}\right)+4}=\frac{16 y}{12 y+16-12 y}=\frac{16 y}{16}=y\) \(\therefore g o f=I_{R-\left\{-\frac{4}{3}\right\}}\) and fog \(=I_{\text {Range } f}\)
    Thus, \(g\) is the inverse of \(f\) i.e. \(f^{-1}=g\).
    Thus, the inverse of \(f\) is the map \(g:\) Range \(f \rightarrow R-\left\{-\frac{4}{3}\right\},\) which is given by \(g(y)=\frac{4 y}{4-3 y}\).

  • Question 4
    1 / -0

    What is \(\tan \left\{2 \tan ^{-1}\left(\frac{1}{3}\right)\right\}\) equal to?

    Solution

    We know that,

    \(2 \times \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right),-1

    It is given that,

    \(\tan \left\{2 \tan ^{-1}\left(\frac{1}{3}\right)\right\},\) here \(x=\frac{1} {3}\) and \(-1

    \(\Rightarrow 2 \times \tan ^{-1}\left(\frac{1}{3}\right)=\tan ^{-1}\left(\frac{2 \times \frac{1}{3}}{1-\left(\frac{1}{3}\right)^{2}}\right)=\tan ^{-1}\left(\frac{3}{4}\right)\)

    \(\Rightarrow \tan \left\{2 \tan ^{-1}\left(\frac{1}{3}\right)\right\}=\tan \left(\tan ^{-1}\left(\frac{3}{4}\right)\right)=\frac{3}{4}\)

  • Question 5
    1 / -0

    A bag contains 5 black and 3 white balls. Two balls are drawn at random one after the other without replacement. What is the probability that both are white?

    Solution

    Given:

    A bag contains 5 black and 3 white.

    So, Total number of balls =5+3=8

    Now, P(both the balls are white)=38×27=328

  • Question 6
    1 / -0

    What is the number of different messages that can be represented by three a’s and two b’s?

    Solution

    We know that:

    Suppose a set of \(n\) objects has \(n_{1}\) of one kind of object, \(n_{2}\) of a second kind, \(n_{3}\) of a third kind, and,

    So, on with \(n=n_{1}+n_{2}+n_{3}+\ldots+n_{k}\) then the number of distinguishable permutations of the \(n\) objects is:

    \(=\frac{n !}{n_{1} ! \times n_{2} ! \times n_{3} ! \ldots \ldots . n_{k} !}\)

    Given: Three a’s and two b’s

    a

    a

    a

    b

    b

    Total number \(=3+2=5\)
    In the set of 5 words has 3 words of one kind and 2 words of the second kind.
    Therefore, number of different messages that can be represented by three a's and two b's,
    \(=\frac{5 !}{3 ! 2 !}=10\)
     
  • Question 7
    1 / -0

    The value of \(\int(x-1) e^{-x} d x\) is equal to:

    Solution

    Given: \(\int(x-1) e^{-x} d x\)

    Let \(I=\int(x-1) e^{-x} d x\)

    On separating the terms, we have

    \(I=\int x e^{-x} d x-\int e^{-x} d x\)

    For first term, using product rule

    \(I=-x e^{-x}-\int 1 \cdot(-) e^{-x} d x-\int e^{-x} d x+C\)

    On rewriting the terms, we have

    \(I=-x e^{-x}+\int e^{-x}-\int e^{-x} d x+C\)

    Here, two integrals get cancelled out and we are only left with algebraic terms which do not requires any further integration.

    \(\Rightarrow I=-x e^{-x}+C\), where \(C\) is the constant of integration.

  • Question 8
    1 / -0

    If \(A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\), then the expression \(A^{3}-2 A^{2}\) is:

    Solution

    Given,

    \(A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\)

    \(A^{2}=A \cdot A\)

    \(=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \times\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\)

    \(=\left[\begin{array}{cc}1+1 & -1-1 \\ -1-1 & 1+1\end{array}\right]\)

    \(=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\)

    \(A^{3}=A^{2} \cdot A\)

    \(=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right] \times\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\)

    \(=\left[\begin{array}{cc}2+2 & -2-2 \\ -2-2 & 2+2\end{array}\right]\)

    \(=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\)

    \(=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\)

    Now,

    \(A^{3}=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\) and

    \(2 A^{2}=2 \times\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]\)

    \(=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\)

    \(\therefore A^{3}-2 A^{2}=\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]-\left[\begin{array}{cc}4 & -4 \\ -4 & 4\end{array}\right]\)

    \(=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\)

    So, the expression \( A^{3}-2 A^{2}\) is a null matrix.

  • Question 9
    1 / -0

    What is the equation of the straight line parallel to \(3 x+2 y+1=0\) and passing through the point \((-1,-2) ?\)

    Solution

    Given: \(3 x+2 y+1=0\)

    \(\Rightarrow 2 y=-3 x-1\)

    \(\Rightarrow y=\frac{-3}{2} x-\frac{1}{2}\)

    Compare this with the slope-intercept form to find the slope of the line: \(y=m x+c\)

    So, \(m=\frac{-3}{2}\)

    Now the slope of the given line is \(m=\frac{-3}{2}\), since the given line is parallel to the required line

    we know that the slope of the parallel is the same, i.e. under the condition of parallel lines \(m_{1}=m_{2}\)

    Now the slope of the required line is also equals to \(m=\frac{-3}{2}\)

    Equation of line:

    \(y-y_{1}=m\left(x-x_{1}\right)\)

    \(\Rightarrow y+2=\frac{-3}{2}(x+1)\)

    \(\Rightarrow 2 \times(y+2)=-3 \times(x+1)\)

    \(\Rightarrow 2 y+4=-3 x-3\)

    \(\Rightarrow 3 x+2 y+4+3=0\)

    \(\Rightarrow 3 x+2 y+7=0\)

  • Question 10
    1 / -0

    Find the degree of the differential equation\(y=x \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{-1}\).

    Solution

    Given:

    \(y=x \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{-1}\)

    The given differential equation can be written as:

    \(\Rightarrow y=x \frac{d y}{d x}+\frac{1}{\frac{d y}{d x}}\)

    \(\Rightarrow y \frac{d y}{d x}=x\left(\frac{d y}{d x}\right)^{2}+1\)

    As we know that, the highest order derivative occurring in a differential equation is called the order of a differential equation

    So, for the given differential equation order is 1.

    As we know that, the power of the highest order derivative which occurs in it, after it is made free from radicals and fractions is called the degree of a differential equation.

    So, for the given differential equation degree is 2.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now