Self Studies
Selfstudy
Selfstudy

Mathematics Test - 22

Result Self Studies

Mathematics Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    In a room, there are eight couples. Out of them if 4 people are selected at random, the probability that they may be couples is?

    Solution

    Given:

    In a room, there are eight couples.

    \(\Rightarrow\) Eight couples \(=16\) peoples

    We have to select four peoples out of 16 peoples.

    \(\Rightarrow\) Total possible cases \(={ }^{16} \mathrm{C}_{4}\)

    Now, we have to select four people- they may be couples

    So, we have to select two couples from eight couples.

    \(\Rightarrow\) Favourable cases \(={ }^{8} \mathrm{C}_{2}\)

    So, required Probability \(=\frac{{ }^{8} \mathrm{c}_{2}}{{ }^{16} \mathrm{c}_{4}}\)

  • Question 2
    1 / -0

    If the angles of a triangle ABC are in AP and b : c =3:2,then what is the measure of angle A?

    Solution

    We know that if A, B and C are angles and a, b and c are the sides of a ΔABC, then:

    asinA=bsinB=csinC

    Let us consider Δ ABC with A, B and C as its angles and a, b and c as its sides.

    It is given that angles are in AP i.e A, B and C are in AP.

    ⇒ 2 × B = A + C

    As we know that, A + B + C =180°

    ⇒ 3 × B = 180° ----(∵ 2 × B = A + C)

    ⇒ B = 60°

    As we know that, if A, B and C are angles and a, b and c are the sides of a Δ ABC, then:

    asinA=bsinB=csinC

    bc=sinBsinC

    As it is given that b : c =3:2and sin C = sin 60° = 3:2.

    32=32sinCsinC=12

    ⇒ C = 45°

    ∵ A + B + C = 180° ⇒ A + 60° + 45° = 180°

    ⇒ A = 75°.

  • Question 3
    1 / -0

    Find the value of\(\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|\).

    Solution

    Given,

    \(\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|\)

    Applying \(\mathrm{C}_{1} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}\), we get

    \(=\left|\begin{array}{ccc}a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z\end{array}\right|\)

    Taking \(a+x+y+z\) common from \(C_{1}\), we get

    \(=(a+x+y+z)\left|\begin{array}{ccc}1 & y & z \\ 1 & a+y & z \\ 1 & y & a+z\end{array}\right|\)

    Applying \(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\) and \(\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\), we get

    \(=(a+x+y+z)\left|\begin{array}{ccc}1 & y & z \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|\)

    \(=(a+x+y+z) [1(a^2-0)-y(0-0)+z(0-0)]\)

    \(=a^{2}(a+x+y+z)\)

  • Question 4
    1 / -0

    The expected value of the number of heads obtained when three fair coins are tossed simultaneously is:

    Solution
    If three fair coins are tossed then the different values of the number of heads we can get are 0,1,2 or 3 heads and the total number of different outcomes possible is \(2 \times 2 \times 2=8\)
    \(
    \mathrm{p}(0)=\frac{{ }^{3} \mathrm{C}_{0}}{8}=\frac{1}{8}
    \)
    \(\mathrm{p}(1)=\frac{{ }^{3} \mathrm{C}_{1}}{8}=\frac{3}{8}\)
    \(\mathrm{p}(2)=\frac{{ }^{3} \mathrm{C}_{2}}{8}=\frac{3}{8}\)
    \(
    \mathrm{p}(3)=\frac{{ }^{3} \mathrm{C}_{3}}{8}=\frac{1}{8}
    \)
    \(\therefore \mathrm{E}(\) Head \()=\Sigma(\) Value \(\times\) Probability)
    \(
    \begin{array}{l}
    =\left(0 \times \frac{1}{8}\right)+\left(1 \times \frac{3}{8}\right)+\left(2 \times \frac{3}{8}\right)+\left(3 \times \frac{1}{8}\right) \\
    =\frac{12}{8}=1.5
    \end{array}
    \)
  • Question 5
    1 / -0

    What is the minimum value of \(\frac{a^{2}}{\cos ^{2} x}+\frac{b^{2}}{\sin ^{2} x}\) where \(a>0\) and \(b>0\)

    Solution

    The given equation is

    \(\frac{a^{2}}{\cos ^{2} x}+\frac{b^{2}}{\sin ^{2} x}=a^{2} \sec ^{2} x+b^{2} \operatorname{cosec}^{2} x\)

    As we know that, minimum value of \(m \sec ^{2} \theta+n \operatorname{cosec}^{2} \theta=(\sqrt{m}+\sqrt{n})^{2}\)

    Here, \(m=a^{2}\) and \(n=b^{2}\).

    So, the minimum value of \(\frac{a^{2}}{\cos ^{2} x}+\frac{b^{2}}{\sin ^{2} x}=a^{2} \sec ^{2} x+b^{2} \operatorname{cosec}^{2} x=(a+b)^{2}\)

  • Question 6
    1 / -0

    What is the general solution of the differential equation \(x^{2} d y+y^{2} d x=0\)?

    Solution

    Given:

    \(x^{2} d y+y^{2} d x=0\)

    \(\Rightarrow \frac{d y}{y^{2}}=-\frac{d x}{x^{2}}\)

    Now, by integrating both the sides we get

    \(\Rightarrow \int y^{-2} d y+\int x^{-2} d x=0\)

    \(\Rightarrow-\frac{1}{y}-\frac{1}{x}=-C_{1}\)

    \(\Rightarrow \frac{1}{y}+\frac{1}{x}=C_{1}\)

    \(\Rightarrow x+y=C_{1}(x y)\)

    \(\Rightarrow C(x+y)=x y,\) where \(C=\frac{1}{c_{1}}\)

  • Question 7
    1 / -0

    Consider a binary operation \(^{*}\) on \(\mathrm{N}\) defined as \(a^{*} b=a^{3}+b^{3},\) Choose the correct answer.

    Solution

    On \(\mathrm{N},\) the operation \(^{*}\) is defined as \(a^{*} b=a^{3}+b^{3}\).
    For, \(a, b, \in \mathbf{N},\) we have
    \(a^{*} b=a^{3}+b^{3}=b^{3}+a^{3}=b^{*} a \quad\)[Addition is commutative in \(\left.\mathrm{N}\right]\)
    Therefore, the operation \(^{*}\) is commutative.
    It can be observed that:
    \((1 ^* 2)^{*} 3=\left(1^{3}+2^{3}\right)^{*} 3=(1+8) ^{*} 3=9 ^{*} 3=9^{3}+3^{3}=729+27=756\) and
    \(1^{*}\left(2^{*} 3\right)=1^{*}\left(2^{3}+3^{3}\right)=1^{*}(8+27)=1^{*} 35=1^{3}+35^{3}=1+42875=42876\) \(\therefore(1 ^* 2) ^* 3 \neq 1^{*}(2 ^{*} 3),\) where \(1,2,3 \in \mathrm{N}\)
    Therefore, the operation * is not associative.
    Thus, the operation \(^{*}\) is commutative, but not associative.

  • Question 8
    1 / -0

    \(|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|,\) then which one of the following is correct?

    Solution

    Given:

    \(|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|\)

    Squaring both sides,

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|^{2}=|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|^{2}\)

    Now we have

    \(|\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}|^2=|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|^2-4\overrightarrow{\mathrm{a}}.\overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|^2\)

    \(\Rightarrow-4 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0\)

    \(\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=0\)

    \(\therefore\) Vector a is perpendicular to b.

  • Question 9
    1 / -0

    If \(A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]=\frac{1}{2}(P+Q)\) where \(P\) is symmetric and \(Q\) is skew symmetric matrix then \(P\) and \(Q\) are:

    Solution
    Given,
    \(A=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]=\frac{1}{2}(P+Q)\)
    Where \(P\) is symmetric and \(Q\) is a skew-symmetric matrix.
    As we know,
    Any square matrix can be be expressed as the sum of the symmetric and skew-symmetric matrix. i.e If \(A\) is a square matrix then \(A\) can be expressed as where \(A + A ^{\prime}\) is symmetric and \(A - A ^{\prime}\) is skew-symmetric matrix.
    On comparing \(A=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]=\frac{1}{2}(P+Q)\) with \(A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right)\) we get,
    \( P=A+A^{\prime}\) and \(Q=A-A^{\prime}\)
    As, \(A=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]\)
    \(\therefore A^{\prime}=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]\)
    So, \(\begin{aligned}P=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]+\left[\begin{array}{cc}
    2 & -1 \\
    3 & 2
    \end{array}\right]\end{aligned}\)
    \(\begin{aligned}\Rightarrow P=\left[\begin{array}{ll}
    4 & 2 \\
    2 & 4
    \end{array}\right]\end{aligned}\)
    Similarly,
    \(\begin{aligned}
    &Q=\left[\begin{array}{cc}
    2 & 3 \\
    -1 & 2
    \end{array}\right]-\left[\begin{array}{cc}
    2 & -1 \\
    3 & 2
    \end{array}\right] \end{aligned}\)
    \(\begin{aligned} \Rightarrow Q=\left[\begin{array}{cc}
    0 & 4 \\
    -4 & 0
    \end{array}\right]
    \end{aligned}\)
    So,
    \(\begin{aligned}
    &P=\left[\begin{array}{ll}
    4 & 2 \\
    2 & 4
    \end{array}\right]\end{aligned}\) and \(\begin{aligned}Q=\left[\begin{array}{cc}
    0 & 4 \\
    -4 & 0
    \end{array}\right]
    \end{aligned}\)
  • Question 10
    1 / -0

    Find the differentiation of the following function \(\sec ^{-1} \tan x .\)

    Solution

    Given term \(\sec ^{-1} \tan x\)

    Let us consider \(f(x)=\sec ^{-1} \tan x\)

    As we know that the differentiation of \(\sec ^{-1} x\) is given as

    \(\frac{d\left(\sec ^{-1} x\right)}{d x}=\frac{1}{x \sqrt{x^{2}-1}}\)

    In order to solve the problem we will use the chain rule.

    According to the chain rule, we have:

    \(\frac{d p}{d q}=\frac{d p}{d u} \cdot \frac{d u}{d q}\)

    Using the chain rule let us proceed

    So, by using the formula, we get

    \(\frac{d f(x)}{d x}=\frac{d\left(\sec ^{-1} \tan x\right)}{d x}\)

    \(=\frac{1}{\tan x \sqrt{\tan ^{2} x-1}} \times \frac{d \tan x}{d x}\)

    \(\frac{1}{\tan x \sqrt{\tan ^{2} x-1}} \times \sec ^{2} x \quad \quad\left[\because \frac{d \tan x}{d x}=\sec ^{2} x\right]\)

    \(=\frac{1}{\frac{\sin x}{\cos x} \sqrt{\frac{\sin ^{2} x}{\cos ^{2} x}-1}} \times \frac{1}{\cos ^{2} x}\)

    \(=\frac{1}{\frac{\sin x}{\cos x} \sqrt{\frac{\sin ^{2} x-\cos ^{2} x}{\cos ^{2} x}}} \times \frac{1}{\cos ^{2} x}\)

    By simplifying above equation, we get

    \(=\frac{1}{\frac{\sin x}{\cos x} \frac{\sqrt{\sin ^{2} x-\cos ^{2} x}}{\cos x}} \times \frac{1}{\cos ^{2} x}\)

    \(=\frac{1}{\sin x \sqrt{\sin ^{2} x-\cos ^{2} x}}\)

    Thus, the differentiation of \(\sec ^{-1} \tan x\) is \(\frac{1}{\sin x \sqrt{\sin ^{2} x-\cos ^{2} x}}\)
     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now