Given term \(\sec ^{-1} \tan x\)
Let us consider \(f(x)=\sec ^{-1} \tan x\)
As we know that the differentiation of \(\sec ^{-1} x\) is given as
\(\frac{d\left(\sec ^{-1} x\right)}{d x}=\frac{1}{x \sqrt{x^{2}-1}}\)
In order to solve the problem we will use the chain rule.
According to the chain rule, we have:
\(\frac{d p}{d q}=\frac{d p}{d u} \cdot \frac{d u}{d q}\)
Using the chain rule let us proceed
So, by using the formula, we get
\(\frac{d f(x)}{d x}=\frac{d\left(\sec ^{-1} \tan x\right)}{d x}\)
\(=\frac{1}{\tan x \sqrt{\tan ^{2} x-1}} \times \frac{d \tan x}{d x}\)
\(\frac{1}{\tan x \sqrt{\tan ^{2} x-1}} \times \sec ^{2} x \quad \quad\left[\because \frac{d \tan x}{d x}=\sec ^{2} x\right]\)
\(=\frac{1}{\frac{\sin x}{\cos x} \sqrt{\frac{\sin ^{2} x}{\cos ^{2} x}-1}} \times \frac{1}{\cos ^{2} x}\)
\(=\frac{1}{\frac{\sin x}{\cos x} \sqrt{\frac{\sin ^{2} x-\cos ^{2} x}{\cos ^{2} x}}} \times \frac{1}{\cos ^{2} x}\)
By simplifying above equation, we get
\(=\frac{1}{\frac{\sin x}{\cos x} \frac{\sqrt{\sin ^{2} x-\cos ^{2} x}}{\cos x}} \times \frac{1}{\cos ^{2} x}\)
\(=\frac{1}{\sin x \sqrt{\sin ^{2} x-\cos ^{2} x}}\)
Thus, the differentiation of \(\sec ^{-1} \tan x\) is \(\frac{1}{\sin x \sqrt{\sin ^{2} x-\cos ^{2} x}}\)