Now, we are given a complex number \({z}\), where \({z}={x}+{iy}\).
Now, we will apply the property of complex numbers.
We will use the property: \(|{x}+{iy}|=\sqrt{{x}^{2}+({iy})^{2}}\).
We will put the value of \(z\) in the given condition \(\left|\frac{z-5 i}{z+5 i}\right|=1\) and also apply the above property.
Now, putting \(z=x+\) iy in the given condition, we get \(\left|\frac{{x}+{i} {y}-5 {i}}{{x}+{i} {y}+5 {i}}\right|=1\).
Now, separating the real part and imaginary part, we get \(\left|\frac{{x}+{i}({y}-5)}{{x}+{i}({y}+5)}\right|=1\).
Cross-multiplying both sides, we get:
\(|{x+i(y-5)|=|x+i(y+5)}|\)
Using the property \(|{x}+{iy}|=\sqrt{{x}^{2}+({iy})^{2}}\) in the above equation,
\(\sqrt{{x}^{2}+({i}({y}-5))^{2}}=\sqrt{{x}^{2}+({i}({y}+5))^{2}}\)
\({\sqrt{x^{2}-(y-5)^{2}}=\sqrt{x^{2}-(y+5)^{2}}}\) as \(i^{2}=-1\)
Squaring both sides, we get:
\({x^{2}-(y-5)^{2}=x^{2}-(y+5)^{2}}\)
Eliminating same terms from both the sides of the above equation, we get:
\(({y-5)^{2}=(y+5)^{2}}\)
\(({y-5)^{2}-(y+5)^{2}=0}\)
Using property \(a^{2}-b^{2}=(a-b)(a+b)\) in the above equation.
\(\Rightarrow({y-5-y+5)(y-5+y+5)=0}\)
\(\Rightarrow{-10 y=0}\) or \({y=0}\)
Now, \( y=0\) represents the \(x\)-axis.
So, all the complex numbers satisfying \(\left|\frac{z-5 i}{z+5 i}\right|=1\) lies on the \(x\)-axis.