Self Studies
Selfstudy
Selfstudy

Mathematics Test - 24

Result Self Studies

Mathematics Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(z_{1}=2-i\) and \(z_{2}=1+i\), then \(\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|\) is:

    Solution

    Given, \(z_{1}=2-i\) and \(z_{2}=1+{i}\)

    \(\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|\)

    \(=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|\)

    \(=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{1^{2}-i^{2}}\right|\)

    \(=\left|\frac{2(1+i) }{1+1}\right| \quad\quad \left[\because i^{2}=-1\right]\)

    \(=\left|\frac{2(1+i)}{2}\right|\)

    \(=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}\)

  • Question 2
    1 / -0

    Suppose \(\sin 2 \theta=\cos 3 \theta\), here \(0<\theta<\frac{\pi}{2}\) then what is the value of \(\cos 2 \theta\)?

    Solution

    Given:

    \(\sin 2 \theta=\cos 3 \theta, 0<\theta<\frac{\pi}{2}\)

    As we know that, \(\sin 2 \theta=2 \sin \theta \cos \theta\) and \(\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta\).

    \( 2 \sin \theta \cos \theta=4 \cos ^{3} \theta-3 \cos \theta\)

    \(2 \sin \theta=4 \cos ^{2} \theta-3\)

    \(2 \sin \theta=4\left(1-\sin ^{2} \theta\right)-3=4-4 \sin ^{2} \theta-3\)

    \(4 \sin ^{2} \theta+2 \sin \theta-1=0\)

    Comparing the above equation with quadratic equation \(a x^{2}+b x+c=0, a=4, b=2\) and \(c=-1\)

    Now substituting the values in the quadratic formula \(x=\frac{\left(-b \pm \sqrt{b^{2}-4 a c}\right)}{2 a}\) we get,

    \(\sin \theta=\frac{-2 \pm \sqrt{2^{2}-4(4)(-1)}}{2(4)}=\frac{-2 \pm \sqrt{4+16}}{8}=\frac{-2 \pm \sqrt{20}}{8}=\frac{-1 \pm \sqrt{5}}{4}\)

    Thus, \(\sin \theta=\frac{-1 \pm \sqrt{5}}{4}\)

    Since, \(0<\theta<\frac{\pi }{2} = \theta\) lies between \(0^{\circ}\) to \(90^{\circ} =\) all ratios are positive.

    \(\sin \theta=\frac{-1+\sqrt{5}}{4}\)

    As we know that, \(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta\)

    \(\cos 2 \theta=1-2\left(\frac{-1+\sqrt{5}}{4}\right)^{2}=\frac{1+\sqrt{5}}{4}\)

  • Question 3
    1 / -0

    A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m (see Fig). Find its length and breadth.

    Solution

    For rectangle:

    Let breadth \(={x}\)

    Since breadth is \(3 \mathrm{~m}\) less than length,

    Length is \(3 \mathrm{~m}\) more than breadth

    So, Length \(=x+3 \)

    Area \(=\) Length \( \times\) Breadth

    \(=x(x+3)\)

    For triangle:

    Area of triangle:

    \(=\frac{1}{2} \times\) Base \(\times\) Altitude

    \(=\frac{1}{2} \times \mathrm{CD} \times\) Altitude

    \(=\frac{1}{2} \times \mathrm{AB} \times\) Altitude \(\quad\quad\)(Opposite sides of rectangle are equal

    \(=\frac{1}{2} \times {x} \times 12\)

    \(=6 {x}\)

    Given that area of a rectangular park is \(4 \mathrm{~m}^{2}\) more than the area of the isosceles park.

    So, Area of rectangle \(=4+\) Area of triangle,

    \(x(x+3)=4+6 x\)

    \(x^{2}+3 x=4+6 x\)

    \(x^{2}+3 x-6 x-4=0\)

    \(x^{2}-3 x-4=0\)

    Comparing equation with \(a x^{2}+b x+c=0\)

    Here, \(a=1, b=-3, c=-4\)

    We know that:

    \(\ D =b^{2}-4 a c \)

    \( =(-3)^{2}-4 \times 1 \times(-4) \)

    \(=9+16 \)

    \( =25\)

    Thus, roots to equation are

    \(\mathrm{x}=\frac{-b \pm \sqrt{D}}{2 a}\)

    Putting values

    \(x=\frac{-(-3) \pm \sqrt{25}}{2 \times 1} \)

    \(x=\frac{+3 \pm \sqrt{5^{2}}}{2} \)

    \(x=\frac{3 \pm 5}{2}\)

    Solving

    \(\begin{array}{l|l}{x}=\frac{3+5}{2} & {x}=\frac{3-5}{2} \\{x}=\frac{8}{2} & {x}=\frac{-2}{2} \\{x}=4 & {x}=-1\end{array}\)

    So, \(x=4\) and \( x=-1\)

    Since \({x}\) is the breadth of the rectangle, \({x}\) cannot be negative.

    So, \(x=4\) is the solution.

    Breadth \(=x=4 \mathrm{~m}\)

    Length \(=x+3=4+3 m=7 \mathrm{~m}\)

  • Question 4
    1 / -0

    Evaluate the following definite integrals:

    \(\int_{0}^{1} \frac{1-x}{1+x} d x\)

    Solution

    Given: \(\int_{0}^{1} \frac{1-x}{1+x} d x\)

    Let \(I=\int_{0}^{1} \frac{1-x}{1+x} d x\)

    Adding and subtracting 1 to the numerator, we have 

    \(\Rightarrow I=\int_{0}^{1} \frac{2-1-x}{1+x} d x\)

    \(\Rightarrow I=\int_{0}^{1} \frac{2-(1+x)}{1+x} d x\)

    Splitting the terms in numerator, we get 

    \(\Rightarrow I=\int_{0}^{1}\left(\frac{2}{1+x}-\frac{1+x}{1+x}\right) d x\)

    \(\Rightarrow I=\int_{0}^{1}\left(\frac{2}{1+x}-1\right) d x\)

    \(\Rightarrow I=\int_{0}^{1} \frac{2}{1+x} d x-\int_{0}^{1} 1 d x\)

    By integrating, we get

    \(\Rightarrow I=[2 \log (1+x)]_{0}^{1}-[x]_{0}^{1}\)

    \(\Rightarrow I=2[\log (1+x)]_{0}^{1}-[x]_{0}^{1}\)

    Substituting the integral values, we get

    \(\Rightarrow I=2[\log (1+1)-\log (1+0)]-[1-0]\)

    \(\Rightarrow I=2[\log (2)-\log (1)]-[1-0]\)

    \(\Rightarrow I=2[\log 2-0]-1\)

    \(\Rightarrow I=2 \log 2-1\)

    Therefore, the solution of definite integral \(\int_{0}^{1} \frac{1-x}{1+x} d x\) is \(2 \log 2-1\).

  • Question 5
    1 / -0

    If there are 76 persons in a party and if they shake hands with each other, how many handshakes are possible

    Solution

    We have to select 2 persons out of 76 for handshakes.

    \(\therefore\) Number of handshakes \(={ }^{76} \mathrm{C}_{2}=\frac{76 \times 75}{2 \times 1}\)

    = 38 × 75

    = 2850

  • Question 6
    1 / -0

    What is \(\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right]\) equal to?

    Solution

    According to the question,

    We have to find the value of \(\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right]\).

    As we know, the matrix \(\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]\) has 1 row and 3 columns, therefore the order of the matrix is \(1 \times\)3.

    Also, since the matrix \(\left[\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{ b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right]\) has 3 rows and 3 columns, therefore the order of the matrix is \(\mathrm{3} \times \mathrm{3}\).

    We know that, if \(\mathrm{A}\) is a matrix with order \({m} \times {n}\) and \(\mathrm{B}\) is a matrix with order \({n} \times {p}\), then the matrix \(\mathrm{AB}\) has the order \({m} \times {p}\).

    Now we have to compute the order of \(\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right]\), so the product of the orders of the matrices to get the result that is:

    \((1 \times 3)(3 \times 3)\)

    \(=(1 \times 3)\)

    Therefore,

    \(\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]\left[\begin{array}{lll}\mathrm{a} & \mathrm{h} & \mathrm{g} \\ \mathrm{h} & \mathrm{b} & \mathrm{f} \\ \mathrm{g} & \mathrm{f} & \mathrm{c}\end{array}\right]\)

    \(=[\mathrm{ax}+\mathrm{h} \mathrm{y}+\mathrm{g} \mathrm{z} \quad \mathrm{hx}+\mathrm{by}+\mathrm{fz} \quad \mathrm{gx}+\mathrm{fy}+\mathrm{cz}]\)

  • Question 7
    1 / -0

    For the differential equation find the general solution:

    \(\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0\)

    Solution

    The given differential equation is:

    \(\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0 \)

    \(\Rightarrow\left(e^{x}+e^{-x}\right) d y=\left(e^{x}-e^{-x}\right) d x \)

    \(\Rightarrow d y=\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x\)

    Integrating both sides of this equation, we get:

    \(\int d y=\int\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x+\mathrm{C}\)

    \(\Rightarrow y=\int\left[\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right] d x+\mathrm{C}\quad\quad\)....(1)

    Let \(\left(e^{x}+e^{-x}\right)=t\)

    Differentiating both sides with respect to \(x\), we get:

    \(\frac{d}{d x}\left(e^{x}+e^{-x}\right)=\frac{d t}{d x}\)

    \(\Rightarrow e^{x}-e^{-x}=\frac{d t}{d t}\)

    \(\Rightarrow\left(e^{x}-e^{-x}\right) d x=d t\)

    Substituting this value in equation (1), we get:

    \(y=\int \frac{1}{t} d t+\mathrm{C}\)

    \(\Rightarrow y=\log (t)+\mathrm{C}\)

    \(\Rightarrow y=\log \left(e^{x}+e^{-x}\right)+C\)

     

  • Question 8
    1 / -0

    The complex numbers \(z=x+ iy\) which satisfy the equation \(\frac{|z-5 i|}{|z+5 i|}=1\), lie on:

    Solution

    Now, we are given a complex number \({z}\), where \({z}={x}+{iy}\).

    Now, we will apply the property of complex numbers. 

    We will use the property: \(|{x}+{iy}|=\sqrt{{x}^{2}+({iy})^{2}}\).

    We will put the value of \(z\) in the given condition \(\left|\frac{z-5 i}{z+5 i}\right|=1\) and also apply the above property.

    Now, putting \(z=x+\) iy in the given condition, we get \(\left|\frac{{x}+{i} {y}-5 {i}}{{x}+{i} {y}+5 {i}}\right|=1\).

    Now, separating the real part and imaginary part, we get \(\left|\frac{{x}+{i}({y}-5)}{{x}+{i}({y}+5)}\right|=1\).

    Cross-multiplying both sides, we get:

    \(|{x+i(y-5)|=|x+i(y+5)}|\)

    Using the property \(|{x}+{iy}|=\sqrt{{x}^{2}+({iy})^{2}}\) in the above equation,

    \(\sqrt{{x}^{2}+({i}({y}-5))^{2}}=\sqrt{{x}^{2}+({i}({y}+5))^{2}}\)

    \({\sqrt{x^{2}-(y-5)^{2}}=\sqrt{x^{2}-(y+5)^{2}}}\) as \(i^{2}=-1\)

    Squaring both sides, we get:

    \({x^{2}-(y-5)^{2}=x^{2}-(y+5)^{2}}\)

    Eliminating same terms from both the sides of the above equation, we get:

    \(({y-5)^{2}=(y+5)^{2}}\)

    \(({y-5)^{2}-(y+5)^{2}=0}\)

    Using property \(a^{2}-b^{2}=(a-b)(a+b)\) in the above equation.

    \(\Rightarrow({y-5-y+5)(y-5+y+5)=0}\)

    \(\Rightarrow{-10 y=0}\) or \({y=0}\)

    Now, \( y=0\) represents the \(x\)-axis. 

    So, all the complex numbers satisfying \(\left|\frac{z-5 i}{z+5 i}\right|=1\) lies on the \(x\)-axis.

     

  • Question 9
    1 / -0

    For a set of five true or false questions, no student has written the all correct answers and no students have given the same sequence of answers. What is the maximum number of students in the class for this to be possible?

    Solution

    Clearly, there are 2 ways of answering each of the 5 questions i.e true or false.

    \(\therefore\) Total number of different sequence of answers \(=2 \times 2 \times 2 \times 2 \times 2=32\)

    There is only one correct sequence.

    So, the maximum number of sequences except for the all correct answer sequence \(=32-1=31\)

    \(\because\) Different students have given different sequence of answers, so the maximum possible number of students \(=31\)

  • Question 10
    1 / -0

    Find \(M_{13} \times C_{21}+C_{33} \times C_{31}\) for the given matrix \(A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & -1 \\ 3 & 1 & -2\end{array}\right]\), where \(M_{i j}\) and \(C_{i j}\) are the respective minor and co-factor of the element \(a_{i j}\)?

    Solution

    Given: \(A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & -1 \\ 3 & 1 & -2\end{array}\right]\)

    Here, we have to find the value of \(M_{13} \times C_{21}+C_{33} \times C_{31}\) for the given matrix

    \(M_{13}=\left|\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right|=1-0=1\)

    \(C_{21}=(-1)^{3} \times\left|\begin{array}{cc}-3 & 4 \\ 1 & -2\end{array}\right|=-1 \times(6-4)=-2\)

    \(C_{31}=(-1)^{4} \times\left|\begin{array}{cc}-3 & 4 \\ 0 & -1\end{array}\right|=1 \times(3-0)=3\)

    \(C_{33}=(-1)^{6} \times\left|\begin{array}{cc}2 & -3 \\ 1 & 0\end{array}\right|=1 \times(0+3)=3\)

    \(M_{13} \times C_{21}+C_{33} \times C_{31}=1 \times(-2)+3 \times 3=7\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now