Self Studies
Selfstudy
Selfstudy

Mathematics Test - 25

Result Self Studies

Mathematics Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \(f: \mathrm{R} \rightarrow \mathrm{R}\) be given by \(f(x)=\left(3-x^{3}\right)^{\frac{1}{3}},\) then \(fof(x)\) is:

    Solution

    If \(f: \mathrm{R} \rightarrow \mathrm{R}\) be given by \(f(x)=\left(3-x^{3}\right)^{\frac{1}{3}},\)

    \(f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}\)

    \(\therefore f o f(x)=f(f(x))=f\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)=\left[3-\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{3}}\)

    \(=\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}}=\left(x^{3}\right)^{\frac{1}{3}}=x\)

    \(f o f(x)=x\)

  • Question 2
    1 / -0

    If \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=2760,{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=23\), then the value of \(\mathrm{r}\) is

    Solution

    Given: \({ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=2760,{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=23\)

    To find: \(\mathrm{r}=\) ?

    We know, \({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{{ }^{\mathrm{n}} \mathrm{P}_{\mathrm{r}}}{\mathrm{r} !}\)

    \(\Rightarrow 23=\frac{2760}{\mathrm{r} !}\)

    \(\Rightarrow \mathrm{r} !=\frac{2760}{23}=120\)

    \(\Rightarrow \mathrm{r} !=5 \times 24=5 \times 4 \times 6\)

    \(=5 \times 4 \times 3 \times 2 \times 1\)

    \(\therefore \mathrm{r}=5\)

  • Question 3
    1 / -0

    Find the value of \(\lim _{x \rightarrow-\infty}\left[\frac{x^{4} \sin \left(\frac{1}{x}\right)+x^{2}}{\left(1+|x|^{3}\right)}\right]\).

    Solution

    Given: \(\lim _{x \rightarrow-\infty}\left[\frac{x^{4} \sin \left(\frac{1}{x}\right)+x^{2}}{\left(1+|x|^{3}\right)}\right]\).

    We know, when \(x\) tends to \(-\infty, \frac{1}{x}\) tends to \(0\).

    We also know, we can write \(x^{4}\) as \(\frac{x^{3}}{\frac{1}{x}} \ldots \) (i) and \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\ldots\)(ii).

    Now, let the value of the limit be \(\mathrm{L}\).

    So, \(L=\lim _{x \rightarrow-\infty}\left[\frac{x^{4} \sin \left(\frac{1}{x}\right)+x^{2}}{\left(1+|x|^{3}\right)}\right]\)

    Now, from (i), we can write \(L=\lim _{x \rightarrow-\infty}\left[\frac{\frac{x^{3}}{\frac{1}{x}} \sin \left(\frac{1}{x}\right)+x^{2}}{\left(1+|x|^{3}\right)}\right]\)

    \(\Rightarrow L=\lim _{x \rightarrow-\infty}\left[\frac{x^{3} \frac{\sin \left(\frac{1}{x}\right)}{\frac{1}{x}}+x^{2}}{\left(1+|x|^{3}\right)}\right]\)

    Now, from (ii), we know \(\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\)

    So, we can write \(L=\lim _{x \rightarrow-\infty}\left[\frac{x^{3}+x^{2}}{\left(1+|x|^{3}\right)}\right]\)

    Now, as \(x \rightarrow-\infty\), the value of \(x\) is negative.

    So, by the definition of modulus function, we can say \(|x|=-x\).

    \(\Rightarrow|x|^{3}=-x^{3}\)

    \(\Rightarrow 1+|x|^{3}=1-x^{3}\)

    So, we get the limit as \(L=\lim _{x \rightarrow-\infty}\left[\frac{x^{3}+x^{2}}{\left(1-x^{3}\right)}\right]\)

    Now, the function consists of polynomials.

    So, we will take the variable with the highest power, i.e., \(x^3\), common from the numerator as well as the denominator.

    So, we get:

    \(L=\lim _{x \rightarrow-\infty}\left[\frac{x^{3}\left(1+\frac{1}{x}\right)}{x^{3}\left(\frac{1}{x^{3}}-1\right)}\right]\)

    \(\Rightarrow L=\lim _{x \rightarrow-\infty}\left[\frac{\left(1+\frac{1}{x}\right)}{\left(\frac{1}{x^{3}}-1\right)}\right]\)

    Substituting \(x=-\infty\) in the limit, we get:

    \(L=\frac{1+\frac{1}{-\infty}}{\frac{1}{-\infty^{3}}-1}\)

    \(\Rightarrow L=\frac{1+0}{0-1}\)

    \(\Rightarrow L=-1\)

     

  • Question 4
    1 / -0

    The argument of the complex number \(\frac{1-\mathrm{i}}{1+\mathrm{i}},\) where \(\mathrm{i}=\sqrt{-1},\) is

    Solution

    Let, \(z=\frac{1-\mathrm{i}}{1+\mathrm{i}}\)

    or \(\mathrm{z}=\frac{1-\mathrm{i}}{1+\mathrm{i}} \times \frac{1-\mathrm{i}}{1-\mathrm{i}}=\frac{1+\mathrm{i}^{2}-2 \mathrm{i}}{1-\mathrm{i}^{2}}\)

    ⇒ z = -\(\frac{2i}{2}\) = -i

    x + iy = -i

    so, x = 0 and y = -1

    We know that, \(\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{y}{x}\right)\)

    \(\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{-1}{0}\right)=-\tan ^{-1}\left(\frac{1}{0}\right)\)

    \(\operatorname{Arg}(z)=-\tan ^{-1}(\infty)=-\frac{\pi}{2}\)

  • Question 5
    1 / -0

    The plane through the intersection of the planes x + y + z = 1 and 2x + 3y – z + 4 = 0 parallel to y-axis also passes through the point:

    Solution

    Since, equation of plane through intersection of planes

    \(x+y+z=1\)      .......... (1)

    \(2 x+3 y-z+4=0\)         ........... (2)

    Equation of the plane is:

    \(\left(A_{1} x+B_{1} y+C_{1} z-d_{1}\right)+\lambda\left(A_{2} x+B_{2} y+C_{2} z-d_{2}\right)=0\)       .......... (3)

    Using equation (1) and (2) in the equation (3)

    \(\Rightarrow(x+y+z-1)+\lambda(2 x+3 y-z+4)=0\)

    \(\Rightarrow(x+y+z-1)+(2 \lambda x+3 \lambda y-\lambda z+4 \lambda)=0\)

    \(\Rightarrow(x+2 \lambda x)+(y+3 \lambda y)+(z-\lambda z)+(-1+4 \lambda)=0\)

    \((1+2 \lambda) x+(1+3 \lambda) y+(1-\lambda) z+(-1+4 \lambda)=0\) ........ (4)

    But the above plane is parallel to \(y\) -axis then its normal plane is perpendicular to y-axis.

    \(\Rightarrow((1+2 \lambda) \hat{\mathbf{i}}+(1+3 \lambda) \hat{\mathbf{j}}+(1-\lambda) \hat{\mathrm{k}}) \cdot(0 \hat{\mathbf{i}}+\hat{\mathbf{j}}+0 \hat{\mathbf{k}})=0\)

    \(\Rightarrow[(1+2 \lambda) \times 0]+[(1+3 \lambda) \times 1]+[(1-\lambda) \times 0]=0\)

    \(\Rightarrow 1+3 \lambda=0\)

    \(\Rightarrow 1=-3 \lambda\)

    \(\therefore \lambda=-\frac{1}{3}\)

    By substituting \(\lambda=-3\) in equation (4),

    \(\Rightarrow\left(1+2\left(-\frac{1}{3}\right)\right) \mathrm{x}+\left(1+3\left(-\frac{1}{3}\right)\right) \mathrm{y}+\left(1-\left(-\frac{1}{3}\right)\right) \mathrm{z}+\left(-1+4\left(-\frac{1}{3}\right)\right)=0\)

    \(\Rightarrow\left(1-\frac{2}{3}\right) \mathrm{x}+(1-1) \mathrm{y}+\left(1+\frac{1}{3}\right) \mathrm{z}+\left(-1-\frac{4}{3}\right)=0\)

    \(\Rightarrow\left(\frac{3-2}{3}\right) \mathrm{x}+0 \mathrm{y}+\left(\frac{3+1}{3}\right) \mathrm{z}+\left(\frac{-3-4}{3}\right)=0\)

    \(\Rightarrow\left(\frac{1}{3}\right) \mathrm{x}+\left(\frac{4}{3}\right) \mathrm{z}-\left(\frac{7}{3}\right)=0\)

    So, the equation of required plane is

    \(\therefore \mathrm{x}+4 \mathrm{z}-7=0\)

    Now, we need to substitute the points given in the option to find which point is satisfying the above equation. The point which satisfies the equation is the point through which the plane is passing.

    Option (A):

    (-3, 0, -1) ⇒ -3 + 4(-1) – 7 ≠ 0

    Option (B):

    (-3, 1, 1) ⇒ -3 + 4(1) – 7 ≠ 0

    Option (C):

    (3, 3, -1) ⇒ 3 + 4(-1) – 7 ≠ 0

    Option (D):

    (3, 2, 1) ⇒ 3 + 4(1) – 7 = 0

    Therefore, the plane passes through the point (3, 2, 1).

  • Question 6
    1 / -0

    Which one of the following vectors is normal to the vector \(\hat{i}+\hat{\jmath}+\hat{k}\)?

    Solution

    The dot product of normal and the given vector will be zero.

    1. \((\hat{\imath}+\hat{\jmath}+\hat{k}) \cdot(\hat{\imath}+\hat{\jmath}-\hat{k})=1+1-1 \neq 0\)

    2. \((\hat{\imath}+\hat{\jmath}+\hat{k}) \cdot(\hat{\imath}-\hat{\jmath}+\hat{k})=1-1+1 \neq 0\)

    3. \((\hat{\imath}+\hat{\jmath}+\hat{k}) \cdot(\hat{i}-\hat{\jmath}-\hat{k})=1-1-1 \neq 0\)

  • Question 7
    1 / -0

    Consider the following statements:

    1. Both variance and standard deviation are measures of variability in the population.

    2. Standard deviation is the square of the variance.

    Which of the above statements is/are correct?

    Solution

    1. Both variance and standard deviation are measures of variability in the population.

    This statement is correct.

    2.The standard deviation is the square root of the variance.

    So, the given statement is not correct.

  • Question 8
    1 / -0

    From the top of a lighthouse \(70 \mathrm{~m}\) high with its base at sea level, the angle of depression of a boat is \(15^{\circ}\). The distance of the boat from the foot of the lighthouse is:

    Solution

    From the top of a lighthouse, \(70 \) m high with its base at sea level, the angle of depression of a boat is \(15^{\circ}\)

    Consider the base is "b'.

    \(\tan \theta=\frac{70}{x}\)

    \(\tan 15^{\circ}=\frac{70}{x}\) ..(1)

    \( \tan \left(45^{\circ}-30^{\circ}\right)=\frac{70}{x}\)

    We know that,

    \(\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}\)

    \(\tan \left(45^{\circ}-30^{\circ}\right)=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \cdot \tan 30^{\circ}}\)

    \(\tan \left(15^{\circ}\right)=\frac{1-\frac{1}{\sqrt{3}}}{1+1. \frac{1}{\sqrt{3}}}\)

    \(\tan \left(15^{\circ}\right)=\frac{\sqrt{3}-1}{\sqrt{3}+1}\)

    By Rationalisation, we get

    \( \tan 15^{\circ}=2-\sqrt{3}\)

    From equation (1), we get

    \( \frac{70}{x}=2-\sqrt{3}\)

    \(\mathrm{x}=\frac{70}{2-\sqrt{3}}\)

    \( \mathrm{x}=\frac{70}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}\)

    \(x=70(2+\sqrt{3})\) m

  • Question 9
    1 / -0

    If \(m\left[\begin{array}{ll}-3 & 4\end{array}\right]+n\left[\begin{array}{ll}4 & -3\end{array}\right]=\left[\begin{array}{ll}10 & -11\end{array}\right]\), then find \(m\) and \(n\).

    Solution

    Given, 

    \(m\left[\begin{array}{ll}-3 & 4\end{array}\right]+n\left[\begin{array}{ll}4 & -3\end{array}\right]=\left[\begin{array}{ll}10 & -11\end{array}\right]\)

    \(\Rightarrow\left[\begin{array}{lll}-3 & m+4 n & 4 m-3 n\end{array}\right]=\left[\begin{array}{ll}10 & -11\end{array}\right]\)

    By equating above matrices, we get

    \(-3 m+4 n=10 \Rightarrow 12 m-16 n=-40 \ldots \ldots\)...(i)

    \(4 m-3 n=-11 \Rightarrow 12 m-9 n=-33 \ldots \ldots\) (ii)

    Solving equation (i) and (ii) , we get,

    \(-7 n=-7\)

    \(\therefore n=1\) and \(m=-2\)

  • Question 10
    1 / -0

    If all the students of class VI shake hands with each other and the total number of the handshake is 780. Find the number of students in class VI.

    Solution

    Given:

    Number of shake hands \(= 780\)

    Let the total number of students is \(y\)

    \(\Rightarrow{ }^{y} C_{2}=780\)

    \(\Rightarrow \frac{y !}{2 !(y-2) !}=780\)

    \(\Rightarrow \frac{\mathrm{y}(\mathrm{y}-1)}{2}=780\)

    \(\Rightarrow \mathrm{y}(\mathrm{y}-1)=1560\)

    \(\Rightarrow \mathrm{y}^{2}-\mathrm{y}-1560=0\)

    Using discriminant method:

    \(D=b^{2}-4 a c\)

    \(=(-1)^{2}-4(1)(-1560)\)

    \(=1+6240\)

    \(=6241\)

    \(X=\frac{(-b+\sqrt{D})}{2 a}\)

    \(=\{\frac{-(-1)+\sqrt{6241}} {2}\}\)

    \(=\frac{(1+79)}2\)

    \(=\frac{80}2\)

    \(=40\)

    \(\therefore\) Number of students is 40.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now