Let any point on the intersecting line is:
\(\frac{\mathrm{x}+1}{-3}=\frac{\mathrm{y}-3}{2}=\frac{\mathrm{z}-2}{-1}=\lambda\)
\(\Rightarrow \mathrm{x}=-3 \lambda-1\)
\(\Rightarrow \mathrm{y}=2 \lambda+3\)
\(\Rightarrow z=-\lambda+2\)
So, the coordinates of point of intersection of two lines will be \((-3 \lambda-1,2 \lambda+3,-\lambda+2)\) for some \(\lambda \in \mathrm{R}\).
Let the point \(A=(-3 \lambda-1,2 \lambda+3,-\lambda+2)\)
\(B=(-4,3,1)\)
Then,
\(\mathrm{AB}=\mathrm{OB}-\mathrm{OA}\)
\(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})-\{(-3 \lambda-1) \hat{\mathrm{i}}+(2 \lambda+3) \hat{\mathrm{j}}+(-\lambda+2) \hat{\mathrm{k}}\}\)
\(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})-(-3 \lambda-1) \hat{\mathrm{i}}-(2 \lambda+3) \hat{\mathrm{j}}-(-\lambda+2) \hat{\mathrm{k}}\)
\(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})+(3 \lambda \hat{\mathrm{i}}+1 \hat{\mathrm{i}})+(-2 \lambda \hat{\mathrm{j}}-3 \hat{\mathrm{j}})+(\lambda \hat{\mathrm{k}}-2 \hat{\mathrm{k}})\)
\(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \lambda \hat{\mathrm{i}}+1 \hat{\mathrm{i}})+(3 \hat{\mathrm{j}}-2 \lambda \hat{\mathrm{j}}-3 \hat{\mathrm{j}})+(1 \hat{\mathrm{k}}+\lambda \hat{\mathrm{k}}-2 \hat{\mathrm{k}})\)
\(\Rightarrow \mathrm{AB}=(3 \lambda \hat{\mathrm{i}}-3 \hat{\mathrm{i}})+(-2 \lambda \hat{\mathrm{j}})+(\lambda \hat{\mathrm{k}}-1 \hat{\mathrm{k}})\)
\(\Rightarrow \mathrm{AB}=(3 \lambda-3) \hat{\mathrm{i}}-(2 \lambda) \hat{\mathrm{j}}+(\lambda-1) \hat{\mathrm{k}}\)
Now as the line is parallel to the given plane, therefore AB will be parallel to the given plane and so AB will be perpendicular to the normal of plane.
∴ AB.n = 0
From the plane equation (x + 2y – z – 5 = 0), the normal to the plane is.
\(\mathrm{n}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}\)
Multiplying Equation (1) and (2) we get
\(\Rightarrow \mathrm{AB}=((3 \lambda-3) \hat{\mathrm{i}}-2 \lambda \hat{\mathrm{j}}+(\lambda-1) \hat{\mathrm{k}}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)
\(\Rightarrow \mathrm{AB}=3(\lambda-1)-4 \lambda+(-1)(\lambda-1)\)
[f \(\mathrm{a}=\mathrm{a}_{1} \hat{\mathrm{i}}+\mathrm{a}_{2} \hat{\mathrm{j}}+\mathrm{a}_{3} \hat{\mathrm{k}}\) and \(\mathrm{b}=\mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}\)
then \(\left[\mathrm{ab}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}\right]\)
\(\Rightarrow \mathrm{AB}=3 \lambda-3-4 \lambda-1 \lambda+1\)
\(\Rightarrow \mathrm{AB}=-2 \lambda-2\)
\(\Rightarrow-2 \lambda=2\)
\(\therefore \lambda=-1\)
When we substitute \(\lambda=-1\) in point \(A\),
\(\Rightarrow \mathrm{A}=(-3 \lambda-1,2 \lambda+3,-\lambda+2)\)
\(\Rightarrow \mathrm{A}=(3-1,-2+3,1+2)\)
\(\therefore \mathrm{A}=(2,1,3)\)
Now the required equation of line joining \(A(2,1,3)\) and \(B(-4,3,1)\), which is
\(\Rightarrow \frac{x-(-4)}{2-(-4)}=\frac{y-3}{1-3}=\frac{z-1}{3-1}\)
Equation of line joining \(\left(x_{1}, y_{1}, z_{1}\right)\) and \(\left(x_{2}, y_{2}, z_{2}\right)\) is
\(\left[\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{2}-\mathrm{y}_{1}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right]\)
\(\Rightarrow \frac{\mathrm{x}+4}{6}=\frac{\mathrm{y}-3}{-2}=\frac{\mathrm{z}-1}{2}\)
Now, multiplying by 2 ,
\(\Rightarrow \frac{\mathrm{x}+4}{3}=\frac{\mathrm{y}-3}{-1}=\frac{\mathrm{z}-1}{1}\)