Self Studies
Selfstudy
Selfstudy

Mathematics Test - 26

Result Self Studies

Mathematics Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    In a group of \(100\) higher secondary students, \(50\) students have cleared the NDA exam, \(40\) students have cleared JEE exam and 30 students have cleared both the exams. How many such students are there who have neither qualified NDA nor JEE exam.

    Solution

    Let \(U=\) No. of students in higher secondary group, \(M=\) No. of higher secondary students who qualified NDA exam and \(J=\) No. of higher secondary students who qualified JEE exam.
    Given: \(n(U)=100, n(M)=50, n(J)=40\) and \(n(M \cap J)=30\)
    As we know that, if \(A\) and \(B\) are two finite sets then, \(n(A \cup B)=n \)
    \(n(A)+n(B)-n(A \cap B) \)
    \(\Rightarrow n(M \cup J)=n(M)+n(J)-n(M \cap J)=50+40-30 \) \( =60\)
    \(\therefore\) There are 60 higher secondary students who have qualified either NDA or JEE exam.
    As, we know that the number of higher secondary students who have neither qualified NDA nor JEE exam is given by: \(n[(M \cup J)]\) \(\Rightarrow n[(M \cup J)]=n(U)-n(M \cup J)=100-60=40\)

  • Question 2
    1 / -0

    What is \(\int \frac{d x}{2^{x}-1}\) equal to?

    Solution

    Given:

    \(\int \frac{d x}{2^{x}-1}\)

    Let \(2^{x}=t\)

    On solving, we get-

    \(2^{x} \log _{e} 2 d x=d t\)

    \(d x=\frac{d t}{t \log _{e} 2}\)

    \(\int \frac{d t}{t \log _{e} 2(t-1)}\)

    \(\frac{1}{\log _{e} 2} \int \frac{d t}{t(t-1)}=\frac{1}{\log _{e} 2}\left[\int \frac{-1 d t}{t}+\int \frac{1 d t}{t-1}\right]\)

    \(=\frac{1}{\log _{e} 2}[-\log t+\log (t-1)]+C\)

    \(=\frac{1}{\log _{e} 2}\left[\log t^{-1}+\log (t-1)\right]+C\)

    \(=\frac{1}{\log _{e} 2}\left[\log t^{-1}(t-1)\right]+C\)

    \(=\frac{1}{\log _{e} 2}\left[\log \left(1-t^{-1}\right)\right]+C\)

    \(=\frac{1}{\log _{e} 2}\left[\log \left(1-2^{-x}\right)\right]+C\)

    \(=\frac{\log \left(1-2^{-x}\right)}{\ln 2}+C\)

  • Question 3
    1 / -0

    For any vector \(\alpha\), what is the value of \((\alpha . \hat{i}) \hat{i}+(\alpha . \hat{j}) \hat{j}+(\alpha. \hat{k}) \hat{k}\)

    Solution

    Given:

    \(\alpha\) is any vector

    Let \(\alpha=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\)

    As we know that, if \(\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\) and \(\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\) then

    \(\vec{a} . \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\)

    \((\alpha. \hat{i}) \hat{i}+(\alpha.\hat{j}) \hat{j}+(\alpha . \hat{k}) \hat{k}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\)

    \((\alpha.\hat{i}) \hat{i}+(\alpha. \hat{j}) \hat{j}+(\alpha. \hat{k}) \hat{k}=\alpha\)

  • Question 4
    1 / -0

    In how many ways can a team of \(3\) boys and \(3\) girls be selected from \(5\) boys and \(4\) girls?

    Solution

    Given \(5\) boys and \(4\) girls are in total

    We can select \(3\) boys from \(5\) boys in \({ }^{5} C_{3}\) ways

    Similarly, we can select \(3\) boys from \(54\) girls in \({ }^{4} C_{3}\) ways

    \(\therefore\) Number of ways a team of \(3\) boys and \(3\) girls can be selected is \({ }^{5} C_{3} \times{ }^{4} C_{3}\)

    \({ }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{3}=\frac{5 !}{3 ! 2 !} \times \frac{4 !}{3 ! 1 !}\)

    \(=\frac{5 \times 4 \times 3 !}{3 ! \times 2} \times \frac{4 \times 3 !}{3 !}\)

    \(=10 \times 4\)

    \(=40\)

    \(\therefore\) Number of ways a team of \(3\) boys and \(3\) girls can be selected is \({ }^{5} C_{3} \times{ }^{4} C_{3}=40\) ways

  • Question 5
    1 / -0
    The equation of the line passing through \((-4,3,1)\) parallel to the plane and intersecting the line \(\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z-2}{-1}\) is: \(x+2 y-z-5=0\)
    Solution

    Let any point on the intersecting line is:

    \(\frac{\mathrm{x}+1}{-3}=\frac{\mathrm{y}-3}{2}=\frac{\mathrm{z}-2}{-1}=\lambda\)

    \(\Rightarrow \mathrm{x}=-3 \lambda-1\)

    \(\Rightarrow \mathrm{y}=2 \lambda+3\)

    \(\Rightarrow z=-\lambda+2\)

    So, the coordinates of point of intersection of two lines will be \((-3 \lambda-1,2 \lambda+3,-\lambda+2)\) for some \(\lambda \in \mathrm{R}\).

    Let the point \(A=(-3 \lambda-1,2 \lambda+3,-\lambda+2)\)

    \(B=(-4,3,1)\)

    Then,

    \(\mathrm{AB}=\mathrm{OB}-\mathrm{OA}\)

    \(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})-\{(-3 \lambda-1) \hat{\mathrm{i}}+(2 \lambda+3) \hat{\mathrm{j}}+(-\lambda+2) \hat{\mathrm{k}}\}\)

    \(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})-(-3 \lambda-1) \hat{\mathrm{i}}-(2 \lambda+3) \hat{\mathrm{j}}-(-\lambda+2) \hat{\mathrm{k}}\)

    \(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+1 \hat{\mathrm{k}})+(3 \lambda \hat{\mathrm{i}}+1 \hat{\mathrm{i}})+(-2 \lambda \hat{\mathrm{j}}-3 \hat{\mathrm{j}})+(\lambda \hat{\mathrm{k}}-2 \hat{\mathrm{k}})\)

    \(\Rightarrow \mathrm{AB}=(-4 \hat{\mathrm{i}}+3 \lambda \hat{\mathrm{i}}+1 \hat{\mathrm{i}})+(3 \hat{\mathrm{j}}-2 \lambda \hat{\mathrm{j}}-3 \hat{\mathrm{j}})+(1 \hat{\mathrm{k}}+\lambda \hat{\mathrm{k}}-2 \hat{\mathrm{k}})\)

    \(\Rightarrow \mathrm{AB}=(3 \lambda \hat{\mathrm{i}}-3 \hat{\mathrm{i}})+(-2 \lambda \hat{\mathrm{j}})+(\lambda \hat{\mathrm{k}}-1 \hat{\mathrm{k}})\)

    \(\Rightarrow \mathrm{AB}=(3 \lambda-3) \hat{\mathrm{i}}-(2 \lambda) \hat{\mathrm{j}}+(\lambda-1) \hat{\mathrm{k}}\)

    Now as the line is parallel to the given plane, therefore AB will be parallel to the given plane and so AB will be perpendicular to the normal of plane.

    ∴ AB.n = 0

    From the plane equation (x + 2y – z – 5 = 0), the normal to the plane is.

    \(\mathrm{n}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}\)

    Multiplying Equation (1) and (2) we get

    \(\Rightarrow \mathrm{AB}=((3 \lambda-3) \hat{\mathrm{i}}-2 \lambda \hat{\mathrm{j}}+(\lambda-1) \hat{\mathrm{k}}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})\)

    \(\Rightarrow \mathrm{AB}=3(\lambda-1)-4 \lambda+(-1)(\lambda-1)\)

    [f \(\mathrm{a}=\mathrm{a}_{1} \hat{\mathrm{i}}+\mathrm{a}_{2} \hat{\mathrm{j}}+\mathrm{a}_{3} \hat{\mathrm{k}}\) and \(\mathrm{b}=\mathrm{b}_{1} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}\)

    then \(\left[\mathrm{ab}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}\right]\)

    \(\Rightarrow \mathrm{AB}=3 \lambda-3-4 \lambda-1 \lambda+1\)

    \(\Rightarrow \mathrm{AB}=-2 \lambda-2\)

    \(\Rightarrow-2 \lambda=2\)

    \(\therefore \lambda=-1\)

    When we substitute \(\lambda=-1\) in point \(A\),

    \(\Rightarrow \mathrm{A}=(-3 \lambda-1,2 \lambda+3,-\lambda+2)\)

    \(\Rightarrow \mathrm{A}=(3-1,-2+3,1+2)\)

    \(\therefore \mathrm{A}=(2,1,3)\)

    Now the required equation of line joining \(A(2,1,3)\) and \(B(-4,3,1)\), which is

    \(\Rightarrow \frac{x-(-4)}{2-(-4)}=\frac{y-3}{1-3}=\frac{z-1}{3-1}\)

    Equation of line joining \(\left(x_{1}, y_{1}, z_{1}\right)\) and \(\left(x_{2}, y_{2}, z_{2}\right)\) is

    \(\left[\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{y}_{2}-\mathrm{y}_{1}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}_{2}-\mathrm{z}_{1}}\right]\)

    \(\Rightarrow \frac{\mathrm{x}+4}{6}=\frac{\mathrm{y}-3}{-2}=\frac{\mathrm{z}-1}{2}\)

    Now, multiplying by 2 ,

    \(\Rightarrow \frac{\mathrm{x}+4}{3}=\frac{\mathrm{y}-3}{-1}=\frac{\mathrm{z}-1}{1}\)

  • Question 6
    1 / -0

    If \(\beta\) is perpendicular to both \(\vec{\alpha}\) and \(\vec{\gamma}\) where \(\vec{\alpha}=\hat{k}\) and \(\vec{\gamma}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \mathrm{k},\) then what is \(\beta\) equal to?

    Solution

    Given:

    \(\vec{\alpha}=\mathrm{k}\) and \(\vec{\gamma}=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}\)

    \(\vec{\beta}\) is perpendicular to both \(\vec{\alpha}\) and \(\vec{\gamma}\)

    \(\therefore \vec{\alpha} \times \vec{\gamma}=\vec{\beta}\)

    \(\vec{\alpha} \times \vec{\gamma}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 1 \\ 2 & 3 & 4\end{array}\right|\)

    \(=\hat{i}(0-3)-\hat{j}(0-2)+\hat{k}(0)\)

    \(=-3 \hat{i}+2 \hat{j}\)

  • Question 7
    1 / -0

    Which one of the following differential equations has a periodic solution? (where μ > 0)

    Solution

    On solving the given equation-

    \(\frac{d^{2} x}{d t^{2}}+\mu x=0\)

    \(\Rightarrow\left(D^{2}+\mu\right) x=0\)

    \(\Rightarrow m^{2}+\mu=0\)

    \(m^{2}=-\mu\)

    \(\Rightarrow \mathrm{m}=\pm \sqrt{u} i\)

    \(\Rightarrow x(t)=c_{1} \cos \sqrt{u} t+c_{2} \sin \sqrt{u} t\)

    The functions \(\sin \theta \& \cos \theta\) are always periodic

    \(\therefore \mathrm{x}(\mathrm{t})\) is periodic function.

  • Question 8
    1 / -0
    In the expansion of \((1+x)^{43}\) coefficients of \((2 r+1)^{\text {th }}\) and \((r+2)^{\text {th }}\) terms are equal, then what is the value of \(r(r \neq 1)\)?
    Solution

    Given as:

    \((1+x)^{43}\)

    As we know, the coefficient of the \(r\) term in the expansion of \((1+x)^{n}\) is \({ }^{n} C_{r-1}\).

    Therefore, the coefficients of the \((2 r+1)\) and \((r+2)\) terms in the given expansion are \(^{43} C_{2 r+1-1}\) and \({ }^{43} C_{r+2-1}\)

    For these coefficients to be equal, we must have,

    \({ }^{43} C_{2 r+1-1}={ }^{43} C_{r+2-1}\)

    \({ }^{43} C_{2 r}={ }^{43} C_{r+1}\)

    \(2 r=r+1\) (or) \(2 r+r+1=43\) [Since, \({ }^{n} C_{r}={ }^{n} C_{s} \Rightarrow r=s\) (or) \(r+s=n]\)

    \(2 r-r=1\) (or) \( 3 r+1=43\)

    \(r=1\) (or) \( 3 r=43-1\)

    \(r=1\) (or) \( 3 r=42\)

    \(r=1\) (or) \( r=\frac{42}{3}\)

    \(r=1\) (or) \( r=14\)

    \(\therefore r=14\) [since, value '\(1\)' gives the same term]

  • Question 9
    1 / -0

    Find the real numbers \(x\) and \(y\) if \((x-i y)(3+5 i)\) is the conjugate of \(-6-24 i\).

    Solution

    Solution given below:

    Let \(z=(x-i y)(3+5 i)\)

    \(z=3 x+5 x i-3 y i-5 y i^{2}\)

    \(=3 x+5 x i-3 y i+5 y\)

    \(=(3 x+5 y)+i(5 x-3 y)\)

    \(\therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)\)

    It is given that, \(\bar{z}=-6-24 i\)

    \(\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i\)

    Equating real and imaginary parts, we obtain

    \(3 x+5 y=-6\quad\quad\)....(i)

    \(5 x-3 y=24\quad\quad\)....(ii)

    Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain

    \(\begin{array}{r}9 x+15 y=-18 \\25 x-15 y=120 \\\hline 34 x=102\end{array}\)

    \(\therefore x=\frac{102}{34}=3\)

    Putting the value of \(x\) in equation (i), we obtain

    \(3(3)+5 y=-6\)

    \(\Rightarrow 5 y=-6-9=-15\)

    \(\Rightarrow y=-3\)

    Thus, the values of \(x\) and \(y\) are 3 and -3 respectively.

  • Question 10
    1 / -0

    Find the value of \(\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}\).

    Solution

    Given differential equation\(\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}\)

    On solving, we get-

    \(e^{y} d y=\left(e^{x}+x^{2}\right) d x\)

    Integrationon both sides

    \(\int e^{y} d y=\int\left(e^{x}+x^{2}\right) d x\)

    \(e^{y}=e^{x}+\frac{x^{3}}{3}+c\)

    \(3\left(e^{y}-e^{x}\right)=x^{3}+c^{\prime}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now