Self Studies
Selfstudy
Selfstudy

Mathematics Test - 7

Result Self Studies

Mathematics Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    A medicine is known to be 50% effective to cure a patient. If the medicine is given to 4 patients, what is the probability that at least one patient is cured by this medicine?

    Solution

    Here, probability of medicine to cure patient \(=\frac{1}{2}\)

    And, probability of none cured \(=1-\frac{1}{2}=\frac{1}{2}\)

    The probability that at least one patient is cured by this medicine = 1 - none patient cured by this medicine

    \(=1-(\frac{1}{2}) \times(\frac{1}{2}) \times(\frac{1}{2}) \times(\frac{1}{2})\)

    \(=1-(\frac{1}{2})^{4}\)

    \(=\frac{15}{16}\)

  • Question 2
    1 / -0

    If \(1+\sin \theta+\sin ^{2} \theta+\ldots\) upto \(\infty=2 \sqrt{3}+4,\) then \(\theta=\)

    Solution

    Given:\(1+\sin \theta+\sin ^{2} \theta+\ldots\) upto \(\infty=2 \sqrt{3}+4\)

    First term of the G.P is a = 1 and r = sin θ

    \(\therefore \frac{1}{1-\sin \theta}=2 \sqrt{3}+4\)

    \(1-\sin \theta=\frac{1}{2 \sqrt{3}+4}\)

    \(1-\sin \theta=\frac{1}{2 \sqrt{3}+4} \times \frac{2 \sqrt{3}-4}{2 \sqrt{3}-4}\)

    \(1-\sin \theta=\frac{4-2 \sqrt{3}}{16-12}\)

    \(1-\sin \theta=1-\frac{\sqrt{3}}{2}\)

    \(\sin \theta=\frac{\sqrt{3}}{2}\)

    \(\Rightarrow \theta=\frac{\pi}{3}\)

  • Question 3
    1 / -0

    If \(a\) denotes the number of permutations of \(x+2\) things taken all at a time, \(b\) the number of permutations of \(x\) things being taken 11 at a time and \(c\) the number of permutations of \(x-11\) things taken all at a time such that \(a=182 b c\), then the value of \(x\) is:

    Solution

    We know that the number of permutations of \(n\) things taken \(r\) at a time is given by, \({ }^{n} P_{r}=\frac{n !}{(n-r) !}\)

    Given: \(a\) denotes the number of permutations of \(x+2\) things taken all at a time.

    \(\therefore a={ }^{x+2} P_{x+2}=(x+2) ! \quad\quad\ldots . .(1)\)

    \(b\) denotes the number of permutations of \(x\) things being taken 11 at a time.

    \(\therefore b={ }^{x} P_{11}=\frac{x !}{(x-11) !}\quad\quad\ldots . .(2)\)

    \(c\) denotes the number of permutations of \(x-11\) things taken all at a time.

    \(\therefore c={ }^{x-11} P_{x-11}=(x-11) ! \quad\quad\ldots . .(3)\)

    Given: \(a=182 b c\)

    \(\Rightarrow(x+2) !=182 \times \frac{x !}{(x-11) !} \times(x-11) !\quad\quad[\) Using \((1),(2)\) and \((3)]\)

    \(\Rightarrow(x+2) !=182 x !\)

    \(\Rightarrow(x+2)(x+1) x !=182 x !\quad\quad\) [Using \((x+2) !=(x+2)(x+1) x !]\)

    \(\Rightarrow(x+2)(x+1)=182\)

    \(\Rightarrow x^{2}+x+2 x+2=182\)

    \(\Rightarrow x^{2}+3 x-180=0 \)

    \(\Rightarrow(x+15)(x-12)=0\)

    \(\Rightarrow x=-15\) or \(x=12\) \(\therefore x=12\)

  • Question 4
    1 / -0

    Find the value of \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\)

    Solution

    Given determinant is \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\), simplifying the determinant based on first row we get,

    \(=\left\{0 \times\left(0-a^{2}\right)-c \times(c \times 0-b \times a)+b(c \times a-b \times 0)\right\}^{2}\)

    \(=(a b c+a b c)^{2}\)

    \(=4 a^{2} b^{2} c^{2}\)

    So, the right answer is \(4 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}\)

  • Question 5
    1 / -0

    The set of all real \(x\) satisfying the inequality \(\frac{3-|x|}{4-|x|} \geq 0\):

    Solution

    Given, \(\frac{3-|x|}{4-|x|} \geq 0\)

    \(\Rightarrow 3-|x| \leq 0\) and \(4-|x|<0\)

    or \(3-|x| \geq 0\) and \(4-|x|>0\)

    \(\Rightarrow |x| \geq 3\) and \(|x|>4\)

    \(\Rightarrow x \in(-\infty,-4) \cup[-3,3] \cup(4, \infty)\)

  • Question 6
    1 / -0

    Find the maximum value of15sin θ + 20cos θ.

    Solution

    Given:15sin θ + 20cos θ

    Here a = 15 and b = 20

    Then the maximum value \(=\sqrt{15^{2}+20^{2}}\)

    \(=\sqrt{225+400}\)

    \(=\sqrt{(625)}\)

    \(=25\)

    ∴ The maximum value of 15sin θ + 20cos θ is 25.

  • Question 7
    1 / -0
    Differentiate \(x^{x^{x}}\) with respect to 'x'.
    Solution

  • Question 8
    1 / -0
    Solve the following inverse trigonometric function:
     \(3 \tan \left[\cot ^{-1}\left\{2 \sin \left(\cos ^{-1} \frac{\sqrt{3}}{2}\right)\right\}\right]\)
    Solution

    Given: \(S=3 \tan \left[\cot ^{-1}\left\{2 \sin \left(\cos ^{-1} \frac{\sqrt{3}}{2}\right)\right\}\right]\)

    \(\Rightarrow S=3 \tan \left[\cot ^{-1}\left\{2 \sin \left(\cos ^{-1} \cos 30\right)\right\}\right]\left(\because \cos 30=\frac{\sqrt{3}}{2}\right)\)

    \(\Rightarrow S=3 \tan \left[\cot ^{-1}\{2 \sin (30)\}\right]\)

    \(\Rightarrow S=3 \tan \left[\cot ^{-1}\left\{2 \times \frac{1}{2}\right\}\right]\left(\because \sin 30=\frac{1}{2}\right)\)

    \(\Rightarrow S=3 \tan \left[\cot ^{-1}\{1\}\right]\)

    \(\Rightarrow S=3 \tan \left[\cot ^{-1}\{\cot 45\}\right](\because \cot 45=1)\)

    \(\Rightarrow S=3 \tan [45]\)

    \(\Rightarrow S=3~(\because \tan 45=1)\)


  • Question 9
    1 / -0

    Mean of marks of a class, having 40 students, in a subject are 70. If marks of a student were mistakenly read as 87 instead of 78, then what is the actual mean marks?

    Solution

    Let the sum of the marks of the rest of the students be \(x\).

    Incorrect Mean \(=70\)

    \(\frac{x+87}{40}=70\)

    \(x+87=2800\)

    \(x=2713\)

    Correct sum \(=x+\) correct marks

    \(S=2713+78=2791\)

    Correct Mean \(=\frac{2791}{40}=69.775\)

  • Question 10
    1 / -0

    Let \(R\) be the relation on the set \(R\) of all real numbers, defined by \(a R b\) if \(f|a-b| \leq 1\). Then, \(R\) is:

    Solution

    Since, \(|a-a|=0<1\), so \(a R a, \forall a \in R\)

    \(\therefore R\) is reflexive.

    Now, \(a R b \Rightarrow|a-b| \leq 1 \Rightarrow|b-a| \leq 1 \Rightarrow b R a\)

    \(\therefore R\) is symmetric.

    But \(R\) is not transitive as

    \(1 R2,2 R3\) but \(1 R 3(\because \quad|1-3|=2>1)\)

    Thus, 'Reflexive and symmetric' only is the correct answer.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now