Self Studies
Selfstudy
Selfstudy

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If \((1+i)(1+2 i)(1+3 i) \ldots(1+n i)=\alpha+i \beta\) then \(2.5 .10 \ldots\left(1+n^{2}\right)\):

    Solution
    Given:
    \(\Rightarrow(1+i)(1+2 i)(1+3 i) \ldots .(1+n i)=\alpha+i \beta\)
    If we take modulus on both sides,
    \(\Rightarrow \sqrt{(1+1)\left(1+2^{2}\right) \ldots\left(1+n^{2}\right)}\) \(=\sqrt{\left(a^{2}+\beta^{2}\right)}\)
    Squaring both sides,
    \(\Rightarrow\)\(2.5 .10 \ldots .\left(1+n^{2}\right) =\) \(\left(\alpha^{2}+\beta^{2}\right)\)
  • Question 2
    1 / -0

    Which of the following is true?

    Solution

    As we know, AM ≥ GM

    \(\Rightarrow \frac{\tan ^{2} \theta+\cot ^{2} \theta}{2} \geq \sqrt[2]{\tan ^{2} \theta \times \cot ^{2} \theta}\)

    \(\Rightarrow \frac{\tan ^{2} \theta+\cot ^{2} \theta}{2} \geq 1\)

    ∴ tan2 θ + cot2 θ ≥ 2

  • Question 3
    1 / -0

    If \(\alpha, \beta\) are the roots of \(x^2+p x+q=0\), and \(x^{2 n}+p^n x^n+q^n=0\) and \(\frac{\alpha}{\beta}\) is a root of \(x^n+1+(x+1)^n=0, \alpha^n \neq \beta^n\), the \(n\) must be:

    Solution

    \(\alpha, \beta\) are the roots of \(x^2+p x+q=0\)

    \(\Rightarrow \alpha+\beta=-p\) and \(\alpha \beta=q \ldots( i )\)

    Again, \(\alpha, \beta\) are roots of \(x^{2 n}+p^n x^n+q^n=0\)

    \(\Rightarrow \alpha^{2 n}+p^n \alpha^n+q^n=0\) and

    \(\beta^{2 n}+p^n \beta^n+q^n=0\)

    \(\Rightarrow\left(\alpha^{2 n}-\beta^{2 n}\right)+p^n\left(\alpha^n-\beta^n\right)=0\)

    \(\Rightarrow \alpha^n+\beta^n=-p^n\ldots( ii )\)

    Now \(\frac{\alpha}{\beta}\) is a root of \(\left(x^n+1\right)+(x+1)^n=0\)

    \( \Rightarrow\left(\frac{\alpha^n}{\beta^n}+1\right)+\left(\frac{\alpha}{\beta}+1\right)^n=0 \)

    \( \Rightarrow\left(\alpha^n+\beta^n\right)+(\alpha+\beta)^n=0 \)

    \( \Rightarrow-p^n+(-p)^n=0\)

    Which holds only if \(n\) is an even integer.

  • Question 4
    1 / -0

    Find the area bounded by the curve \(x^{2}=4 y\) and the line \(x=4 y-2\).

    Solution

  • Question 5
    1 / -0

    What is the value of\(1-2+3-4+5 \ldots 101\)?

    Solution

    It is given that,

    We have to find the value of \(1-2+3-4+5-\underline{+} 101\).

    The given series can be written as,

    \(\Rightarrow 1-2+3-4+5-\ldots+101=(1+3+\ldots \ldots+101)-(2+4+\ldots \ldots+100)\)

    As, we can see that \((1,3, \ldots \ldots, 101)\) is an AP with \(a=1\) and \(d=2\).

    We know that general term of an \(\mathrm{AP}\) is given by\(a_{n}=a+(n-1) \times d\)

    Therefore, according to the question,

    \(\Rightarrow a_{n}=101=1+(n-1) \times 2\)

    \(\Rightarrow n=51\)

    We also know that the sum of terms of an\(\mathrm{AP}\)\(S_{n}=\frac{\pi}{2} \times(2 a+(n-1) d)\)

    \(\Rightarrow S_{51}=1+3+\ldots+101=\frac{51}{2} \times(2+50 \times 2)=2601\)

    Similarly, \((2,4, \ldots, 100)\) is an \(\mathrm{AP}\) with \(\mathrm{a}=2\) and \(\mathrm{d}=2\)

    \(\Rightarrow a_{n}=100=2+(n-1) \times 2\)

    \(\Rightarrow \mathrm{n}=50\)

    \(\Rightarrow S_{50}=2+4+\ldots+100=\frac{50}{2} \times(4+49 \times 2)=2550\)

    \(\Rightarrow 1-2+3-4+5-101=(1+3+\ldots \ldots+101)-(2+4+\ldots . .+100)=2601\)

    \(-2550=51\)

  • Question 6
    1 / -0

    If the matrix \(\left[\begin{array}{lll}x & 1 & 2 \\ 1 & x & 2 \\ 1 & 1 & x\end{array}\right]\) is singular, then the value of \(x\) is:

    Solution

    Expanding the determinant of the matrix we get:

    \(\Rightarrow x\left(x^{2}-2\right)-1(x-2)+2(1-x)=0\)

    \(\Rightarrow x^{3}-2 x+2-x+2-2 x=0\)

    \(\Rightarrow x^{3}-5 x+4=0\)

    \(\Rightarrow(x-1)\left(x^{2}+x-4\right)=0\)

    \(\Rightarrow x=1\) or \(x^{2}+x-4=0\)

    \(\Rightarrow x=1\) or \(1.56\) or \(-2.56\)

    This can be done simply by observing that if \(x=1\) the first two columns become the same and so the matrix becomes singular.

  • Question 7
    1 / -0

    For the given differential equation, find the general solution:

    \(\cos ^{2} x \frac{d y}{d x}+y=\tan x \left(0 \leq x<\frac{\pi}{2}\right)\)

    Solution

    The given differential equation: \(\cos ^{2} x \frac{d y}{d x}+y=\tan x\)

    \( \Rightarrow \frac{d y}{d x}+y \sec ^{2} x=\tan x \sec ^{2} x\)

    The given equation is in the form \(\frac{d y}{d x}+p y=Q\) (where \(p=\sec ^{2} x\) and \(\left.Q=\tan x \sec ^{2} x\right)\)

    Now \(I . F .=e^{\int p d x}=e^{\int \sec ^{2} x d x}=e^{\tan x}\)

    The general solution of the given differential equation is given by the relation,

    \(y(I . F.)=\int(Q \times I . F.) d x+C\)

    \(\Rightarrow y e^{\tan x}=\int \tan x \sec ^{2} x e^{\tan x} d x+C\)

    Let \(\tan x=t\)

    \( \Rightarrow \sec ^{2} x d x=d t\)

    Therefore, the solution of differential become:

    \(y e^{t}=\int t e^{t} d t+C\)

    \(\Rightarrow y e^{t}=t . e^{t}-\int e^{t} d t+C \quad\) [Using Integration by part \(\int u d v=u v-\int v d u]\)

    \(\Rightarrow y e^{t}=t . e^{t}+e^{t}+C\)

    \(\Rightarrow y e^{\tan x}=\tan x \cdot e^{\tan x}-e^{\tan x}+C\)

    \(\Rightarrow y=\tan x+1+C e^{-\tan x}\)

    This is the required general solution of the given differential equation.

     

  • Question 8
    1 / -0
    Express the given complex number \(\left(\frac{1}{3}+3 i\right)^{3}\) in the form \(a+i b\):
    Solution
    \(\Rightarrow\left(\frac{1}{3}+3 i\right)^{3}=\left(\frac{1}{3}\right)^{3}+(3 i)^{3}+3\left(\frac{1}{3}\right)(3 i)\left(\frac{1}{3}+3 i\right)\)
    \(=\frac{1}{27}+27 i^{3}+3 i\left(\frac{1}{3}+3 i\right)\)
    \(=\frac{1}{27}+27(-i)+i+9 i^{2} \quad\left[i^{3}=-i\right]\)
    \(=\frac{1}{27}-27 i+i-9 \quad\left[i^{2}=-1\right]\)
    \(=\left(\frac{1}{27}-9\right)+i(-27+1)\)
    \(=\frac{-242}{27}-26 i\)
  • Question 9
    1 / -0

    How many different words can be formed by taking four letters out of the letters of the word ‘AGAIN’ if each word has to start with A?

    Solution

    Here, 5 letters are there in AGAIN but A should always be at beginning.

    So number of ways to arrange 4 letters = 4! = 4 × 3 × 2 = 24

  • Question 10
    1 / -0

    If the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent, then the values of \(k\) are:

    Solution

    If the system of equation \(a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, a_{3} x+b_{3} y+c_{3}=\) 0 be consistent, then:

    \(\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0\)

    Given, the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent.

    \(\left|\begin{array}{ccc}2 & 3 & 5 \\ 1 & k & 5 \\ k & -12 & -14\end{array}\right|=0\)

    \(2(-14 k+60)-3(-14-5 k)+5\left(-12-k^{2}\right)=0\)

    \(\Rightarrow-28 k+120+42+15 k-60-5 k^{2}=0\)

    \(\Rightarrow-5 k^{2}-13 k+102=0\)

    \(\Rightarrow 5 k^{2}+13 k-102=0\)

    \(\Rightarrow 5 k^{2}-30 k+17 k-102=0\)

    \(\Rightarrow 5 k(k-6)+17(k-6)=0\)

    \(\Rightarrow(k-6)(5 k+17)=0\)

    \(\Rightarrow k=6, \frac{-17}{5}\)

    Thus, if the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent, then the values of \(k\) are \(6, \frac{-17}{5}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now