Given:
The value of charge on the first sphere is \(2 \times 10^{-7} \mathrm{C}\).
The value of charge on the second sphere is \(3 \times 10^{-7} \mathrm{C}\).
The distance between spheres is \(30 \mathrm{~cm}=30 \mathrm{~cm} \times\left(\frac{\mathrm{m}}{100 \mathrm{~cm}}\right)=0.3 \mathrm{~m}\)
We are required to calculate the value of force between the given two spheres due to their charge.
Let us write the expression for force of attraction or repulsion between the given spheres.
\(F=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r^{2}} \quad\quad\ldots \ldots .(1)\)
Here \(q_{1}\) is the charge on the first sphere, \(q_{2}\) is the charge on the second sphere, \(r\) is the distance between spheres and \(\varepsilon_{0}\) is free space permittivity.
We know the value of free space permittivity is:
\(\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{N}^{-1} \mathrm{m}^{-2}\)
Substitute \(2 \times 10^{-7} \mathrm{C}\) for \(q_{1}, 3 \times 10^{-7} \mathrm{C}\) for \(q_{2}, 0.3 \mathrm{~m}\) for \(r\) and \(8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\) for \(\varepsilon_{0}\) in equation (1).
\(F=\frac{\left(2 \times 10^{-7} \mathrm{C}\right)\left(3 \times 10^{-7} \mathrm{C}\right)}{4 \pi\left(8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)(0.3 \mathrm{~m})^{2}}\)
\(=\frac{\left(2 \times 10^{-7} \mathrm{C}\right)\left(3 \times 10^{-7} \mathrm{C}\right)}{4 \times 3.14\left(8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)(0.3 \mathrm{~m})^{2}}\)
\(=5.994 \times 10^{-3} \mathrm{~N}\)