We know that,
\(\text { Escape velocity } (v _{ e })=\sqrt{\frac{2 G M}{R}} \ldots \ldots . .(1)\)
Where \(G\) is the Universal Gravitational Constant and \(M\) is the mass of the Earth.
Velocity of the object.
\(v=\frac{v_{e} }{ 3}=\sqrt{\frac{2 G M}{9 R}}\)..... (2)
The initial kinetic energy of the object.
\(K E_{1}=\frac{1}{2} m v^{2}=\frac{1}{2} m \frac{2 G M}{9 R} \ldots\)... (3)
The initial potential energy of the object.
\(P E_{1}=-\frac{G M m}{R} \ldots \ldots .\) (4)
Here \(m\) is the mass of the object.
Let \(h\) be the maximum height reached by the object. when the object reaches the maximum height, its velocity becomes zero which is why its final kinetic energy \(= KE _{2}=0 \ldots \ldots \ldots\) (5)
At the maximum height, the potential energy of the object \(\left( PE _{2}\right)=-\frac{G M m}{R+h} \ldots \ldots .(6)\)
According to the law of conservation of energy,
\(KE _{1}+ PE _{1}= KE _{2}+ PE _{2}\)
(From \(3,4,5\), and 6)
\(\frac{1}{2} m \frac{2 G M}{9 R}-\frac{G M m}{R}=0-\frac{G M m}{R+h}\)
\(\Rightarrow \frac{1}{9 R}-\frac{1}{R}=-\frac{1}{R+h}\)
\(\Rightarrow -\frac{8}{9 R}=-\frac{1}{R+h} \)
\(\Rightarrow 8 R+8 h=9 R\)
\(\Rightarrow h=\frac{R}{8}\)
Thus, the maximum height reached will be \(\frac{R }{ 8}\).