Self Studies
Selfstudy
Selfstudy

Mathematics Test - 1

Result Self Studies

Mathematics Test - 1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    \begin{equation}
    \text { Evaluate: } \int^{4} 4[x] d x
    \end{equation}
    Solution
    \begin{equation}
    \begin{aligned}
    &\mid-4\left[\int[x] d x+\int[x] d x+\int[x] d x\right]\\
    &=4 \cdot\left[\int_{3}^{4} 3 d x+\int_{4}^{5} 4 d x \cdot \int_{5}^{6} 5 d x\right.\\
    &-4.13 \times 1]^{4}+\left[4 \times 1^{5}+15 \times 19\right.\\
    &=4 .[3+4 \cdot 5]=48
    \end{aligned}
    \end{equation}
    Hence, option, C is correct answer
  • Question 2
    1 / -0
    \begin{equation}
    \text { Simplify } \int_{0}^{\pi / 2} \cos ^{2} x d x
    \end{equation}
    Solution
    \begin{equation}
    \begin{array}{l}
    1=\frac{1}{2} \int_{0}^{\pi / 2}(1+\cos 2 x) d x \\
    1=\frac{1}{2}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\pi / 2}=\frac{\pi}{4}
    \end{array}
    \end{equation}
    Hence, option, D is correct answer
  • Question 3
    1 / -0
    \begin{equation}
    \int_{0}^{\pi / 2} \sin ^{2} x d x
    \end{equation}
    Solution
    \begin{equation}
    \begin{array}{l}
    1-\frac{1}{2} \int_{0}^{\pi / 2}(1-\cos 2 x) d x \\
    =\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\pi / 2}=\frac{\pi}{4}
    \end{array}
    \end{equation}
    Hence, option, A is correct answer
  • Question 4
    1 / -0
    0n1-cosx dx=
    Solution
    \begin{equation}
    \begin{array}{l}
    1-\int_{0}^{\pi} \sqrt{2 \sin ^{2}(x / 2)} d x \cdot-\sqrt{2} \int_{0}^{\pi} \sin (x / 2) d x=\sqrt{2}\left[\frac{-\cos (x / 2)}{(1 / 2)}\right]_{0}^{\pi} \\
    -2 \sqrt{2}\left[-\cos \frac{x}{2} \cdot \cos 0\right]-2 \sqrt{2}
    \end{array}
    \end{equation}
    Hence, option, D is correct answer
  • Question 5
    1 / -0
    \begin{equation}
    \int_{0}^{\pi} \sqrt{1+\sin x} d x \text { is equal to }
    \end{equation}
    Solution
    \begin{equation}
    \begin{array}{l}
    \text { 1 }=\int_{\pi}^{\pi} \sqrt{\cos ^{2}(x / 2)+\sin ^{2}(x / 2)+2 \sin (x / 2) \cos (x / 2)} d x \\
    =\int[\cos (x / 2)+\sin (x / 2)] d x \\
    =\left[\frac{\sin (x / 2)}{(1 / 2)}-\frac{\cos (x / 2)}{(1 / 2)}\right]_{0}^{\pi} \\
    =2[\sin (x / 2)-\cos (x / 2)]_{0}^{\pi}=4
    \end{array}
    \end{equation}
    Hence, option, C is correct answer
  • Question 6
    1 / -0
    \begin{equation}
    \text { Evaluate: } \int_{0}^{2 \pi} \sqrt{1+\sin (x / 2)} d x
    \end{equation}
    Solution
    \begin{equation}
    \begin{array}{l}
    1+\sin \frac{x}{2}=\cos ^{2} \frac{x}{4} \cdot \sin ^{2} \frac{x}{4}+2 \sin \frac{x}{4} \cos \frac{x}{4}=\left(\cos \frac{x}{4}+\sin \frac{x}{4}\right)^{2} \\
    \mid-\int_{0}^{2 \pi}\left(\cos \frac{x}{4}+\sin \frac{x}{4}\right) d x-4\left[\sin \frac{x}{4}-\cos \frac{x}{4}\right]_{0}^{2 \pi}-8
    \end{array}
    \end{equation}
    Hence, option, A is correct answer
  • Question 7
    1 / -0

    Let f : R be a differentiable function and f(1) = 4. Find the value of 

    \begin{equation}
    \lim _{x \rightarrow 1} \int_{4}^{f(x)} \frac{2 t}{x-1} d t, \text { if } f^{\prime}(1)=2
    \end{equation}
    Solution
    \begin{equation}
    \begin{aligned}
    \lim _{x \rightarrow 1} \frac{\int_{4}^{f(x)} 2 t d t}{x-1} & \\
    &=\lim _{x \rightarrow 1} \frac{2 f(x) \cdot f^{\prime}(x)}{1} \\
    &=2 f(1) \cdot f^{\prime}(1)=2 \cdot 4 \cdot 2=16
    \end{aligned}
    \end{equation}
    Hence, option, A is correct answer
  • Question 8
    1 / -0

    A missile fired from the ground level rises x meters vertically upwards in t seconds, where x = 100t - 25/2 t2. The maximum height reached is

    Solution
    The siven equation is
    $$
    x=100 t-\frac{25}{2} t^{2}
    $$
    On differentiating w.r. \(t,\) we get
    $$
    \frac{d x}{d t}=100-\frac{25}{2} \cdot(2 t)=100-25 t
    $$
    We know that the velocity of missile is zero at maximum height. \(\therefore\) On purting \(\frac{d x}{d t}=Q\) we get
    $$
    100-25 t=0
    $$
    \(t=4\)
    \(\therefore x=100 \times 4-\frac{25 \times 16}{2}=400-200\)
    $$
    =200
    $$
    Hence, option, A is correct answer
  • Question 9
    1 / -0

    What does y = x2 represent in a 3-dimensional coordinate system?

    Solution

    y = x2 represents a cylinder in a 3 dimensional coordinate system.

    Hence, option, B is correct answer
  • Question 10
    1 / -0

    If a parallelepiped is formed by planes drawn through the points (5, 8, 10) and (3, 6, 8) parallel to the coordinate planes, then the length of diagonal of the parallelepiped is

    Solution

    According to question, if we draw the parallelepiped in 3D space.

    Points P(5, 8,10) and Q(3, 6, 8) appear to be opposite vertices of parallelepiped.

    ∴ Length of PQ gives the length of diagonal of parallelepiped.

    Using distance formula we can find PQ as-

    PQ = 5-32+8-62+10-82

    22+22+22

    12

    23

    ∴ Length of diagonal of the parallelepiped is 2√3 units.

    Hence, option(A) is the only correct choice.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now