Self Studies
Selfstudy
Selfstudy

Mathematics Test - 3

Result Self Studies

Mathematics Test - 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The Rank of the matrix A is:

    \(A=\left[\begin{array}{lll}0 & 0 & -3 \\ 9 & 3 & 5 \\ 3 & 1 & 1\end{array}\right]\)

    Solution

    \(A=\left[\begin{array}{ccc}0 & 0 & -3 \\ 9 & 3 & 5 \\ 3 & 1 & 1\end{array}\right]\)

    \(R_{1} \leftrightarrow R_{3}\)

    \(=\left[\begin{array}{lll}3 & 1 & 1 \\ 9 & 3 & 5 \\ 0 & 0 & -3\end{array}\right]\)

    \(\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-3 \mathrm{R}_{1}\)

    =\(\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & -3\end{array}\right]\)

    \(\mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3}+3 \mathrm{R}_{2}\)

    =\(\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]\)

    \(\therefore \rho(\mathrm{A})=2\)

  • Question 2
    1 / -0

    The number of ways in which 20 bricks can be arranged in a semi circular lawn is:

    Solution

    The 20 bricks can be arranged in a circular lawn in (20 - 1)! = 19! Ways.

    It is semi circular. 

    ⇒ 19!/2 ways. Hence, (B).

  • Question 3
    1 / -0

    Solution

  • Question 4
    1 / -0

    A point P (x, y) is thrice as far from the point (2, 0) as it is from the line x = 4. The locus of P is

    Solution

    From given question, we get

    (x - 2)2 + y2 = 9 (x-4)2/1

    ⇒ y2 - 8x2 + 68x - 140 = 0

  • Question 5
    1 / -0

    One root of the following given equation 

    2x514x4+31x364x2+19x+130=0 is 

    Solution

    We can solve this problem using options given - 
    On putting x = 5, we get

    2(5)514(5)4+31(5)364(5)2+19(5)+130=0

    Hence x = 5 satisfies the given equation.

    Thus 5 is a root of the equation.
    Other options will not satisfy the given equation so the answer is x = 5.

  • Question 6
    1 / -0

    If x2+2ax+103a>0 for all x ∈ R, then

    Solution

  • Question 7
    1 / -0

    The greatest value of \(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is \(:\)

    Solution

    \(\begin{aligned} & f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3} \\ \therefore  & f^{\prime}(x)=\frac{1}{3}\left[\frac{1}{(x+1)^{2 / 3}}-\frac{1}{(x-1)^{2 / 3}}\right] \\=& \frac{(x-1)^{2 / 3}-(x+1)^{2 / 3}}{3\left(x^{2}-1\right)^{2 / 3}} \end{aligned}\)

    Clearly, \(f^{\prime}(x)\) does not exists at \(x=\pm 1\)

    Now, \(f^{\prime}(x)=0\), then \((x-1)^{2 / 3}=(x+1)^{2 / 3}\)

    \(\Rightarrow {x}=0\)

    Clearly, \(f^{\prime}(x)=0\) for any other value of \(x \in[0,1]\). 

    The value of \(f(x)\) at \(x=0\) is 2 . 

    So, the greatest value of \(f(x)\) is 2.

  • Question 8
    1 / -0

    If cos α + cos β = b, sin α + sin β = a, then cos (α + β) =

    Solution

  • Question 9
    1 / -0

    If the roots of the equation \(q x^{2}+p x+q=0\) are complex, where p, q are real then the roots of the equation \(x^{2}-4 q x+p^{2}=0\) are: 

    Solution

    The given equations are

    \(q x^{2}+p x+q=0\)

    and \(x^{2}-4 q x+p^{2}=0\)

    Since, root of the equation (i) are complex, therefore \(P^{2}-4 q^{2}<0\). 

    Now, discriminant or equation (ii) is

    \(16 q^{2}-4 P^{2}=-4\left(P^{2}-4 q^{2}\right)>0\)

    Hence, roots are real and unequal.

  • Question 10
    1 / -0

    If \(a, b, c, d\) are in HP, then:

    Solution

    We know that: The sequence \(a, b, c, d, \ldots\) is considered as an arithmetic progression; the harmonic progression can be written as \(1 / {a}, 1 / {b}, 1 / {c}, 1 / {d}, \ldots\)

    \(a, b, c, d\) are in HP, so \(\frac{1} { a},\frac{1} { b}, \frac{1} { c}, \frac{1} { d},\) are in AP.

    Let, \(\frac{1} { a},=x, \frac{1} { b}=x+y, \frac{1} { c}=x+2 y, \frac{1} { d}=x+3 y\)

    \(\Rightarrow a=\frac{1}{ x}, b=\frac{1} {(x+y)}, c=\frac{1} {(x+2 y)}, d=\frac{1} {(x+3 y)}\)

    Now,

    \(\Rightarrow a+d\) \(=\frac{1}{x}+\frac{1}{x+3 y}=\frac{2 x+3 y}{x^{2}+3 x y}\)

    \(\Rightarrow b+c\) \(=\frac{1}{x+y}+\frac{1}{x+2 y}=\frac{2 x+3 y}{x^{2}+2 x y+x y+y^{2}}=\frac{2 x+3 y}{x^{2}+3 x y+y^{2}}\)

    Numerator of \({a}+{d}\) and \({b}+{c}\) are equal but, denominator of \({b}+{c}\) is greater than \({a}+{d}\)

    So, \(a+d>b+c\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now