We know that,
\(L_{n}=I \omega_{n}\)
\(L_{n}=\frac{n h}{2 \pi}\)
\(E=\frac{1}{2} I \omega_{n}{ }^{2}\)
Let \(\omega_{n}\) be the angular velocity of the molecule in \(n^{t h}\) level
Angular momentum of an orbiting electron in a molecule in \(n^{\text {th }}\) level is given by,
\(L_{n}=I \omega_{n}\) .............(1)
Where, I is the rotational inertia
From Bohr's postulate we know,
\(L_{n}=\frac{n h}{2 \pi}\) .........(2)
Where, \({n}\) is the principal quantum number of the molecule
From the equation. (1) and equation. (2) we get,
\(I \omega_{n}=\frac{n h}{2 \pi}\)
Rearranging above equation we get,
\(\omega_{n}=\frac{n h}{2 \pi I}\) ...............(3)
Rotational energy of a molecule in \(n^{\text {th }}\) level is given by,
\(E=\frac{1}{2} I \omega_{n}{ }^{2}\)
Substituting equation. (3) in above equation we get,
\(E=\frac{1}{2} I \frac{n h^{2}}{2 \pi I}\)
\(\Rightarrow E=\frac{1}{2} I \frac{n^{2} h^{2}}{4 \pi^{2} I^{2}}\)
\(\Rightarrow E=\frac{n^{2} h^{2}}{8 \pi^{2} I}\)
Rotational energy in the \(n^{t h}\) level \(\left(\mathrm{n}=0\right.\) is not allowed) is \(n^{2}\left(\frac{h^{2}}{8 \pi^{2} I}\right)\).