Self Studies

Mathematics Test - 10

Result Self Studies

Mathematics Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    Find the minimum value of sin x + cos 2x

    Solution

    Let f(x) = sin x + cos 2x

    f'(x) = \(\frac{d}{d x}(\sin x+\cos 2 x)\)

    For finding the minimum value

    f'(x) = cos x + (-sin 2x)(2) = 0

    cos x - 2(2 sin x cos x) = 0

    cos x - 4 sin x cos x = 0

    cos x (1 - 4 sin x) = 0

    So, either \(\cos x=0 \Rightarrow x=\frac{\pi}{2}\)

    Or \(\sin x=\frac{1}{4} \Rightarrow x=\sin ^{-1} \frac{1}{4}\)

    f'' = -sin x - 4(cos2 x - sin2 x)

    Now for minimum value f''(x) > 0

    At x = \(\frac{\pi}{2}\), f'' = -1 - 4(0 - 1) = 3 > 0

    \(\therefore {f}({x})\) is minimum at \({x}=\frac{\pi}{2}\)

    \(f\left(\frac{\pi}{2}\right)=\sin \frac{\pi}{2}+\cos \pi\)

    \(f\left(\frac{\pi}{2}\right)=1+(-1)=0\)

  • Question 2
    3 / -1

    The differential equation of the family of curves y = c1ex + c2e-x is:

    Solution

    \(y=c_{1} e^{x}+c_{2} e^{-x}\)

    \(\Rightarrow \frac{d y}{d x}=\frac{d}{d x} c_{1} e^{x}+\frac{d}{d x} c_{2} e^{-x}\)

    \(\Rightarrow \frac{d y}{d x}=c_{1} e^{x}-c_{2} e^{-x}\)

    \(\Rightarrow \frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(c_{1} e^{x}-c_{2} e^{-x}\right)\)

    \(\Rightarrow \frac{d^{2} y}{d x^{2}}=c_{1} e^{x}+c_{2} e^{-x}=y\)

    \(\Rightarrow \frac{d^{2} y}{d x^{2}}-y=0\)

  • Question 3
    3 / -1

    The equation of a normal to the parabola \(y^{2}=4 x\) which passes through the point \((6,0)\) is:

    Solution

    Given,

    \(y^{2}=4 x\), passes through the point \((6,0)\).

    If given line compared with \(y^{2}=4 a x\) gives \(a=1\).

    For \(y^{2}=4 a x\), equation of normal is given by

    \(y=m x-2 a m-a m^{3}\)

    So, for a given parabola, the equation of normal is,

    \(y=m x-2 m-m^{3} \ldots \text { (1) }\)

    It passes through \((3,0)\).

    \(\therefore 0=6 m-2 m-m^{3} \)

    \(\Rightarrow m^{3}-4 m=0 \)

    \(\Rightarrow m\left(m^{2}-4\right)=0 \)

    \(\therefore m=0,2,-2\)

    Substituting the values of \(m\) in equation (1), we get

    \(y=0 \)

    \(y=2 x-12 \)

    \(y=-2 x+12 \text { which can also be written as, } \)

    \(y+2 x=12\)

  • Question 4
    3 / -1

    If \(y=e^{x+e^{x+e^{x+\cdots \infty}}}\), then \(\frac{d y}{d x}\) is:

    Solution

    Given,

    \(y=e^{x+e^{x+e^{x+\cdots \infty}}}\)

    \(\therefore y=e^{x+\left(e^{x+e^{x+\ldots}}\right)}=e^{x+y}\)

    Differentiating both sides with respect to \(x\) and using the chain rule, we get:

    \(\frac{d y}{d x}=\frac{d}{d x} e^{x+y}\)

    \(\Rightarrow \frac{d y}{d x}=e^{x+y} \frac{d}{d x}(x+y)\)

    \(\Rightarrow \frac{d y}{d x}=y\left(1+\frac{d y}{d x}\right)\)

    \(\Rightarrow \frac{d y}{d x}=y+y \frac{d y}{d x}\)

    \(\Rightarrow(1-y) \frac{d y}{d x}=y\)

    \(\Rightarrow \frac{d y}{d x}=\frac{y}{1-y}\)

    \(\therefore \frac{d y}{d x} \text { of } y=e^{x+e^{x+e^{x+\cdots}}} \text { is } \frac{y}{1-y}\)

  • Question 5
    3 / -1

    \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}\) equals:

    Solution

    Given:

    \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}=\frac{\sin (\pi)}{0^{2}}=\frac{0}{0}\). This is an Indeterminate Form.

    \(\therefore\) By applying L'Hospital's Rule:

    \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \sin \left(\pi \cos ^{2} x\right)}{\frac{d}{d x} x^{2}}\)

    \(=\lim _{x \rightarrow 0} \frac{-2 \pi \sin x \cos x \cos \left(\pi \cos ^{2} x\right)}{2 x}\)

    \(=(-\pi) \lim _{\mathrm{x} \rightarrow 0} \frac{\sin \mathrm{x}}{\mathrm{x}} \times \lim _{\mathrm{x} \rightarrow 0} \cos \mathrm{x} \times \lim _{\mathrm{x} \rightarrow 0} \cos \left(\pi \cos ^{2} \mathrm{x}\right)\)

    \(=(-\pi) \times 1 \times 1 \times(-1)=\pi\)

  • Question 6
    3 / -1

    The solution of the differential equation \(x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)\) with \(y(1)=1\), is:

    Solution

    We are given the differential equation as \(x \frac{d y}{d x}+2 y=x^{2}\).

    First, we will convert our differential equation into the linear form.

    We have:

    \(x \frac{d y}{d x}+2 y=x^{2}\)

    Dividing both the sides by \(x\), we get,

    \(\Rightarrow \frac{d y}{d x}+\frac{2 y}{x}=x\)

    So, comparing with \(\frac{d y}{d x}+P y=Q\), we get,

    \(P=\frac{2}{x}\) and \(Q=x\).

    Now, to solve further we will find the integrating factor.

    The integrating factor is given as

    \(I.F.=e^{\int P\ d x}\)

    As, \(P=\frac{2}{x}\), so we get,

    \(\Rightarrow I . F.=e^{\int \frac{2}{x} d x}\)

    As, \(\int \frac{1}{x} d x=\log x\), so we get,

    \(\Rightarrow I. F.=e^{2 \log x}\)

    As, \(n \log x=\log x^{n}\), so we get,

    \(\Rightarrow I. F.=e^{\log x^{2}}\)

    Now, we know that,

    \(e^{\log x}=x, e^{\log x^{2}}=x^{2}\), so we get,

    \(\Rightarrow I .F.=x^{2}\)

    Now, we know the solution is given as,

    \(y \times I. F.=\int(Q \times I. F.) d x+C\)

    As, \(I.F.=x^{2}, Q=x\), so we get,

    \(\Rightarrow y x^{2}=\int\left(x \times x^{2}\right) d x\)

    \(\Rightarrow y x^{2}=\int x^{3} d x\)

    As, \(\int x^{n} d x=\frac{x^{n+1}}{n}\), so,

    \(\Rightarrow y x^{2}=\frac{x^{4}}{4}+C\)

    Dividing both the sides by \(x^{2}\), we get,

    \(\Rightarrow y=\frac{x^{2}}{4}+\frac{C}{x^{2}}\)

    Now, we have \(y(1)\) as 1, i.e., \(y(1)=1\).

    So, putting \(x=1\) and \(y=1\), we get,

    \(\Rightarrow 1=\frac{1^{2}}{4}+\frac{C}{1^{2}}\)

    \(\Rightarrow 1=\frac{1}{4}+\frac{C}{1}\)

    \(\Rightarrow 1=\frac{1}{4}+C\)

    Solving for \(C\), we get,

    \(\Rightarrow C=1-\frac{1}{4}=\frac{3}{4}\)

    \(\Rightarrow C=\frac{3}{4}\)

    So, putting it in the value of \(y\), we get,

    \(\Rightarrow y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}\)

  • Question 7
    3 / -1

    Find the root of equation x2 + kx + 2 = 0 where, k is the arithmetic mean of root of equation x2 + 6x + 8 = 0. 

    Solution

    Let, \(\alpha\) and \(\beta\) are the roots of \(x^{2}+6 x+8=0\), then

    Sum of root \(= \alpha+\beta=-6\)

    Arithmetic mean of root of equation \(=\frac{\alpha+\beta}{2}\) \(=\frac{-6}{2}\) \(=-3 \)

    According to question, arithmetic mean is \(k\).

    So, \(k=-3\)

    Therefore, equation \(x^{2}+k x+2=0\) becomes

    \(x^{2}-3 x+2=0 \) \(\Rightarrow(x-2)(x-1)=0 \)

    \(\Rightarrow x=2\) and \(x=1\)

    So, required roots of equation are \(1, 2\).

  • Question 8
    3 / -1

    Two letters were randomly chosen from the word \(G U I T A R I S T\). Find the probability that the letters are \(R\) and \(T\).

    Solution

    Total number of letters in word \(G U I T A R I S T=9\)

    Number of all combinations of \(n\) things, taken \(r\) at a time, is given by \({ }^n C_r=\frac{n !}{(r) !(n-r) !}\)

    Total ways of two letters at randomly chosen \(n(S)={ }^9 \mathrm{C}_2\)

    \(=\frac{9 \times 8}{2 \times 1}\) \(=36\)

    Possible Opportunities in which one letter is \(T\) and one is

    \( R={ }^2 C_1 \times{ }^1 C_1\)

    \(=\frac{2 !}{1 ! 1 !} \times \frac{1 !}{1 ! 0 !}\)

    \(=2 \times 1\) \(=2 \)

    \(\Rightarrow n(E)=2\)

    Required probability \(\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}\)

    \(=\frac{2}{36}=\frac{1}{18}\)

  • Question 9
    3 / -1

    If \(y=\tan ^{-1}\left[\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right],\) then find out \(\frac{d y}{d x}\)

    Solution

    Given \(y=\tan ^{-1}\left[\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right]\)

    Let \(x=a \tan \theta\)

    \(y=\tan ^{-1}\left[\frac{3 a^{2} a \tan \theta-(a \tan \theta)^{3}}{a\left[a^{2}-3(\operatorname{atan} \theta)^{2}\right]}\right]\)

    Taking a3 common from both denominator and numerator

    \(y=\tan ^{-1}\left[\frac{3 \tan \theta-\tan ^{3} \theta}{\left(1-3 \tan ^{2} \theta\right)}\right]\)

    \(y=\tan ^{-1}[\tan 3 \theta]\)

    \(y=3 \theta=3 \tan ^{-1}\left(\frac{x}{a}\right)\)

    Now \(\frac{d y}{d x}=\frac{d}{d x}\left[3 \tan ^{-1}\left(\frac{x}{a}\right)\right]\)

    \(\frac{d y}{d x}=\frac{3}{1+\frac{x^{2}}{a^{2}}} \times \frac{1}{a}\)

    \(\frac{d y}{d x}=\frac{3 a}{a^{2}+x^{2}}\)

  • Question 10
    3 / -1

    For the following LPP:

    \(\text { Max. } Z=-0.1 x_{1}+0.5 x_{2} \)

    \(2 x_{1}+5 x_{2} \leq 80 \)

    \(x_{1}+x_{2} \leq 20 \)

    \(x_{1}, x_{2} \geq 0\)

    to get the optimum solution, the values of \(x_{1}, x_{2}\) are:

    Solution

    Given,

    \(\text {Max. } Z=-0.1 x_{1}+0.5 x_{2} \)

    \(2 x_{1}+5 x_{2} \leq 80 \)

    \(x_{1}+x_{2} \leq 20 \)

    \(x_{1}, x_{2} \geq 0\)

    Convert the inequality constraints into equations, we have

    \(2 x_{1}+5 x_{2}=80 \)

    \(x_{1}+x_{2}=20 \)

    \(2 \mathrm{x}_{1}+5 \mathrm{x}_{2}=80 \text { passes through the point }(0,16) \text { and }(40,0) \text {. }\)

    \(x_{1}+x_{2}=20 \text { passes through the point }(0,20) \text { and }(20,0) \text {. }\)

    Now, the co ordinates of the point \(A=(0,16), B=(20,0)\) and \(C=\left(\frac{20}{3}, \frac{40}{3}\right)\)

    Corner Point

    Coordinate of point and value of Z

     
    A (0,6) 8
    B (20,0) -2
    C (\(\frac{20}{3},\frac{40}{3}\)) 6.066

    Here, maximum value occurs at \((0,16)\)

    For given

    \(\text { Max. } Z=-0.1 x_{1}+0.5 x_{2} \)

    \(2 x_{1}+5 x_{2} \leq 80 \)

    \(x_{1}+x_{2} \leq 20 \)

    \(x_{1}, x_{2} \geq 0 \text { to get the optimum solution, the values of } \mathrm{x}_{1}, \mathrm{x}_{2} \text { are } \)

    \((0,16) \text {. }\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now