Self Studies

Mathematics Test - 11

Result Self Studies

Mathematics Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    If \(\vec{a}=6 \hat{i}+4 \hat{j}+4 \hat{k}\) and \(\vec{b}=2 \hat{i}+4 \hat{j}+3 \hat{k}\), then the value of \(\vec{b} \times \vec{a}\) is:

    Solution
    Given,
    \(\vec{a}=6 \hat{i}+4 \hat{j}+4 \hat{k} \text { and } \vec{b}=2 \hat{i}+4 \hat{j}+3 \hat{k} \)
    \(\vec{a}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k} \text { and } \vec{b}=a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\)
    Then,
    \(\vec{b} \times \vec{a}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1}\end{array}\right| \quad \ldots . .(2)\)
    \(\vec{b} \times \vec{a}=\hat{i}\left(b_{2} c_{1}-c_{2} b_{1}\right)-\hat{j}\left(a_{2} c_{1}-c_{2} a_{1}\right)+\hat{k}\left(a_{2} b_{1}-a_{1} b_{2}\right)\)
    On comparing \(\vec{a}=6 \hat{i}+4 \hat{j}+4 \hat{k}\) and \(\vec{b}=2 \hat{i}+4 \hat{j}+3 \hat{k}\) with (1)
    we get
    \(\mathrm{a}_{1}=6, \mathrm{~b}_{1}=4, \mathrm{c}_{1}=4\)
    \(a_{2}=2, b_{2}=4, c_{2}=3\)
    From equation (2),
    \(\vec{b} \times \vec{a}=\left|\begin{array}{lll}
    \hat{i} & \hat{j} & \hat{k} \\
    2 & 4 & 3 \\
    6 & 4 & 4
    \end{array}\right| \)
    \(=\hat{i}(16-12)-\hat{j}(8-18)+\hat{k}(8-24) \)
  • Question 2
    3 / -1

    A problem is given to three persons and their chances of solving it are \(\frac{1}{3}, \frac{1}{4}, \frac{1}{5}\) respectively. This probability that none will solve it is:

    Solution

    Probability of Solving the problem by first person \(=\frac{1}{3}\)

    Probability of Solving the problem by second person \(=\frac{1}{4}\)

    Probability of Solving the problem by third person \(=\frac{1}{5}\)

    We know that, probability of occurrence of an event \(= 1-\) Probability of not happening of the same event

    Then, probability of Not Solving the problem by first person \(=1-\left(\frac{1}{3}\right)=\frac{2}{3}\)

    Probability of not Solving the problem by second person \(=1-\left(\frac{1}{4}\right)=\frac{3}{4}\)

    Probability of not Solving the problem by third person \(=1-\left(\frac{1}{5}\right)=\frac{4}{5}\)

    So, the probability of none solving the problem \(=\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5}=\frac{2}{5}\)

  • Question 3
    3 / -1

    The area of the region bounded by the lines \(y=|x-1|\) and \(y=3-|x|\) is:

    Solution

    Given:

    Curve \(1: y=|x-1|\)

    \(y=1-x\) for \(x<1\)

    \( y=x-1\) for \(x \geq 1\)

    Curve \(2: y=3-|x|\)

    \( y=3+x\) for \(x<0\)

    \(y=3-x\) for \(x \geq 0\)

    Area enclosed\((A)\) \(=\int_{x_{1}}^{x_{2}}\left(y_{1}-y_{2}\right) d x\)

    \(A=\int_{-1}^{2}\left( 3-|x|-|x-1|\right) d x\)

    \(A=\left|\int_{-1}^{0} \left(3+x-(1-x)\right) d x\right|+\left|\int_{0}^{1} \left(3-x-(1-x)\right) d x\right|+\left|\int_{1}^{2}\left(3-x-(x-1)\right) d x\right|\)

    \(A=\left|\int_{-1}^{0}(2+2 x) d x\right|+\left|\int_{0}^{1} 2 d x\right|+\left|\int_{1}^{2}(4-2 x) d x\right|\)

    \(A=\left|\left[2 x+x^{2}\right]_{-1}^{0}\right|+\left|[2 x]_{0}^{1}\right|+\left|\left[4 x-x^{2}\right]_{1}^{2}\right|\)

    \(A=1+2+1=4\) sq. units

  • Question 4
    3 / -1

    What is the modulus of \(\frac{1+7 i}{(2-i)^{2}}\) ?

    Solution

    As we know,

    If \(z=x+i y \ldots(1)\) be any complex number, then its modulus is given by,

    \(|z|=\sqrt{x^{2}+y^{2}}\)

    Let,

    \(z=\frac{1+7 i}{(2-i)^{2}}\)

    \(=\frac{1+7 i}{2^{2}+i^{2}-4 i} \)

    \(=\frac{1+7 i}{4-1-4 i} \)

    \(=\frac{1+7 i}{3-4 i} \)

    \(=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i} \)

    \(=\frac{3+4 i+21 i+28 i^{2}}{3^{2}-(4 i)^{2}}\)

    \(=\frac{3+25 i-28}{9+16} \)

    \(=\frac{-25+25 i}{25} \)

    \(\therefore z=-1+i \ldots(2)\)

    Comparing equation (1) and (2), we get

    \(x=-1 \text { or } y=1 \)

    \(\text { As, }|z|=\sqrt{x^{2}+y^{2}} \)

    \(\therefore|z|=\sqrt{(-1)^{2}+1^{2}} \)

    \(\Rightarrow|z|=\sqrt{1+1} \)

    \(\Rightarrow|z|=\sqrt{2}\)

    So, the modulus of \(\frac{1+7 i}{(2-i)^{2}}\) is \(\sqrt{2}\).

  • Question 5
    3 / -1
    Differentiate \(x^{x^{x}}\) with respect to 'x'.
    Solution
    Consider, \(f(x)=x^{x^{x}}\)
    Taking log on both side, we get
    \(\Rightarrow \log f(x)=\log x^{x^{x}}\)
    \(\Rightarrow \log f(x)=x^{x} \log x\)
    Now, use the Product Rule for Differentiation, we get
    \(\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{uv})=\mathrm{u} \frac{\mathrm{dv}}{\mathrm{dx}}+\mathrm{v} \frac{\mathrm{du}}{\mathrm{dx}}\)
    \(\Rightarrow \frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}=\left(\mathrm{x}^{\mathrm{x}}\right) \frac{1}{\mathrm{x}}+\log \mathrm{x} \cdot\left[\mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x})\right]\)
    \(\Rightarrow \frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}=\left(\mathrm{x}^{\mathrm{x}}\right)\left[\frac{1}{\mathrm{x}}+\log \mathrm{x} .(1+\log \mathrm{x})\right]\)
    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot\left(\mathrm{x}^{\mathrm{x}}\right)\left[\frac{1}{\mathrm{x}}+\log \mathrm{x} \cdot(1+\log \mathrm{x})\right]\)
    \(\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{x}^{\mathrm{x}^{\mathrm{x}}} \cdot\left(\mathrm{x}^{\mathrm{x}}\right)\left[\frac{1}{\mathrm{x}}+\log \mathrm{x} .(1+\log \mathrm{x})\right]\)
  • Question 6
    3 / -1

    Find the value of \(A\), if \(\sqrt{3}-3 \sqrt{3} \tan ^{2} A=3 \tan A-\tan ^{3} A\).

    Solution

    Given,

    \(\sqrt{3}-3 \sqrt{3} \tan ^{2} \mathrm{~A}=3 \tan \mathrm{A}-\tan ^{3} \mathrm{~A} \)

    \(\Rightarrow \sqrt{3}\left(1-3 \tan ^{2} A\right)=3 \tan A-\tan ^{3} A \)

    \(\Rightarrow \sqrt{3}=\frac{\left(3 \tan \mathrm{A}-\tan ^{3} \mathrm{~A}\right)}{\left(1-3 \tan ^{2} \mathrm{~A}\right)} \)

    \(\Rightarrow \sqrt{3}=\tan 3 \mathrm{~A}\)

    We know that,

    \(\tan 60^{\circ}=\sqrt{3}\)

    Therefore,

    \(\tan 60^{\circ}=\tan 3 A \)

    \(3 A=60^{\circ} \)

    \(A=\frac{60^{\circ}}{3}=20^{\circ} \)

    \(\therefore A=20^{\circ}\)

  • Question 7
    3 / -1

    The scores of \(15\) students in an examination were recorded as \(10,5,8,16,18,20,8,10,16,20,18\), \(11,16,14\) and \(12\). After calculating the mean, median and mode, an error is found. One of the values is wrongly written as \(16\) instead of \(18\). Which of the following measures of central tendency will change?

    Solution

    Recorder data are \(10,5,8,16,18,20,8,10,16,20,18,11,16,14\) and 12

    Let us arrange the following data in ascending order to find out the median and mode, \(5,8,8,10,10,11,12,14,16,16,16,18,18,20,20\)

    Total number of observation \(=15\)

    \(\operatorname{Mean}=\frac{\sum \mathrm{x}}{\mathrm{n}}=\frac{5+8+8+10+10+11+12+14+16+16+16+18+18+20+20}{15}=\frac{202}{15}\)

    Median \(=\) value of \(\left(\frac{n+1}{2}\right)^{\text {th }}\) observation

    \(\therefore\) Median \(=8^{\text {th }}\) observation \(=14\)

    From above observation 16 occurs maximum number of times.

    \(\therefore\) Mode \(=16\)

    Given: One of the values is wrongly written as \(16\) instead of \(18\)

    \(5,8,8,10,10,11,12,14,16,16,18,18,18,20,20\)

    Mean \(=\frac{\sum \mathrm{x}}{\mathrm{n}}=\frac{5+8+8+10+10+11+12+14+16+16+18+18+18+20+20}{15}=\frac{204}{15}\)

    Median \(=\) value of \(\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}\) observation

    \(\therefore\) Median \(=8^{\text {th }}\) observation \(=14\)

    From above observation 18 occurs maximum number of times.

    \(\therefore \text { Mode }=18\)

    We can see that Mean and mode are changed.

  • Question 8
    3 / -1

    The mean and variance of a binomial distribution are \(8\) and \(4\) respectively, then \(p(x = 1)\) is equal to?

    Solution

    Mean \(\mu=n p=8\) ...(1)

    Variance \(\sigma^{2}=\mathrm{npq}=4\) ..(2)

    Dividing equation (2) by (1), we get

    \(q=\frac{1}{2}\)

    As we know, \(p+q=1\)

    \(p=1-q=\frac{1}{2}\)

    Put the value of \(n\) in equation (1), we get

    \(n=16\)

    Now,

    \(P(x=1)={ }^{16} C_{1}\left(\frac{1}{2}\right)^{1} \times\left(\frac{1}{2}\right)^{16-1}\)

    \(=16 \times \frac{1}{2^{16}}\)

    \(=2^{4} \times \frac{1}{2^{16}}\)

    \(P(x=1)\) is \(\frac{1}{2^{12}}\).

  • Question 9
    3 / -1

    Evaluate \(\int \frac{3 a x}{b^{2}+c^{2} x^{2}} d x\).

    Solution

    Given,

    \(\int \frac{3 a x}{b^{2}+c^{2} x^{2}} d x\)

    Let \(I=\int \frac{3 a x}{b^{2}+c^{2} x^{2}} d x\).

    Substituting \(b^{2}+c^{2} x^{2}=t\)

    \(\Rightarrow\left(2 \mathrm{c}^{2} \mathrm{x}\right) \mathrm{dx}=\mathrm{dt}\)

    \(\Rightarrow \mathrm{xdx}=\frac{\mathrm{dt}}{2 \mathrm{c}^{2}}\)

    \(\Rightarrow \mathrm{I}=\frac{3 \mathrm{a}}{2 \mathrm{c}^{2}} \int \frac{1}{\mathrm{t}} \mathrm{dt}\)

    \(\Rightarrow I=\frac{3 \mathrm{a}}{2 \mathrm{c}^{2}} \log |t|+C\)

    \(\Rightarrow \mathrm{I}=\frac{3 \mathrm{a}}{2 \mathrm{c}^{2}} \log \left|\mathbf{b}^{2}+\mathrm{c}^{2} \mathrm{x}^{2}\right|+\mathrm{C}\)

    \(\therefore \int \frac{3 a x}{b^{2}+c^{2} x^{2}} d x=\frac{3 \mathrm{a}}{2 \mathrm{c}^{2}} \log \left|\mathrm{b}^{2}+\mathrm{c}^{2} \mathrm{x}^{2}\right|+\mathrm{C}\)

  • Question 10
    3 / -1

    \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}\) and \(\hat{b}=3 \hat{i}-2 \hat{j}+\hat{k}\) are two vectors. The angle between them is:

    Solution

    If \(\vec{a}\) and \(\vec{b}\) are two non-zero vectors then scalar product will be:

    \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \quad \ldots\) (1)

    Where, \(\theta\) is angle between \(\vec{a}\) and \(\vec{b}\) and, \(|\vec{a}|=\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\) and \(|\vec{b}|=\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}} \quad \ldots\) (2)

    Given:

    \(\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}\)

    \(\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}\)

    Then,

    \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \)

    \(\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \)

    \(\cos \theta=\frac{(2 \hat{i}+\hat{j}+3 \hat{k}) \cdot(3 \hat{i}-2 \hat{j}+\hat{k})}{\sqrt{2^{2}+1^{2}+3^{2}} \cdot \sqrt{3^{2}+(-2)^{2}+1^{2}}} \)

    \(\cos \theta=\frac{6-2+3}{\sqrt{14} \sqrt{14}} \)

    \(\cos \theta=\frac{7}{14}=\frac{1}{2} \)

    \(\cos \theta=\cos 60^{\circ} \)

    \(\theta=60^{\circ}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now