Self Studies

Mathematics Test - 12

Result Self Studies

Mathematics Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    The problem of maximizing \(z=x_1-x_2\) subject to constraints \(x_1+x_2 \leq 10, x_1 \geq 0, x_2 \geq 0\) and \(x_2 \leq 5\) has:

    Solution

    Maximizing \(z=x_1-x_2\)

    Constraints \(x_1+x_2 \leq 10\)

    \(x_1 \geq 0\)

    \(x_2 \geq 0 \)

    \( x_2 \leq 5\)

    Corner points are: \((0,0)(5,0),(5,5),(0,10)\).

    \(Z(0,0)=0-0=0 \)

    \(Z(0,5)=0-5=-5\)

    \( Z(5,5)=5-5=0\)

    \( Z(10,0)=10-0=10\)

    Maximum \({Z}={Z}(10,0)=10\)

  • Question 2
    3 / -1

    \(\int_{1}^{4} \frac{x^{2}+x}{\sqrt{2 x+1}} d x\) is equal to:

    Solution

    Given:

    \(I=\int_{1}^{4} \frac{x^{2}+x}{\sqrt{2 x+1}} d x\)

    Let \(2 x+1=t^{2}\) ..(1)

    Differentiaiting with respect to \(\mathrm{x}\), we get:

    \( 2 \mathrm{dx}=2 \mathrm{tdt}\)

    \( d x=t d t\)

    x 1 4
    t \(\sqrt{3}\) 3

    From equation (1), we get:

    \(x=\frac{t^{2}-1}{2}\)

    Now,

    \(I=\int_{\sqrt{3}}^{3} \frac{\left(\frac{t^{2}-1}{2}\right)^{2}+\frac{t^{2}-1}{2}}{\sqrt{t^{2}}} t d t\)

    \(=\int_{\sqrt{3}}^{3}\left(\frac{t^{4}-2 t^{2}+1}{4}+\frac{t^{2}-1}{2}\right) d t\)

    \(=\int_{\sqrt{3}}^{3}\left(\frac{t^{4}-2 t^{2}+1+2 t^{2}-2}{4}\right) d t\)

    \(=\frac{1}{4} \int_{\sqrt{3}}^{3}\left(t^{4}-1\right) \mathrm{d} t\)

    \(=\frac{1}{4}\left[\frac{t^{5}}{5}-t\right]_{\sqrt{3}}^{3}\)

    \(=\frac{57-\sqrt{3}}{5}\)

  • Question 3
    3 / -1

    What is the general solution of the differential equation x2 dy + y2 dx = 0 ?

    Where c is the constant of integration.

    Solution

    Given:\(x^{2} d y+y^{2} d x=0\)

    \(\Rightarrow x^{2} d y=-y^{2} d x\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^{2}}=-\frac{\mathrm{dx}}{\mathrm{x}^{2}}\)

    Integrating both sides, we get

    \(\int \frac{\mathrm{dy}}{\mathrm{y}^{2}}=-\int \frac{\mathrm{dx}}{\mathrm{x}^{2}}\)

    \(\frac{-1}{\mathrm{y}}=-\frac{-1}{\mathrm{x}}+\mathrm{c}\)

    \(\frac{-1}{\mathrm{y}}=\frac{1}{\mathrm{x}}+\mathrm{c}\)

    \(\frac{1}{x}+\frac{1}{y}=-c\)

    \(\mathrm{x}+\mathrm{y}=-\mathrm{cxy}\)

    Here \(c\) is differential constant, take \(-c=\frac{1}{c}\) (Because \(\frac{1}{c}\) is also a constant)

    \(\Rightarrow c(x+y)=x y\)

  • Question 4
    3 / -1

    If \(f(x)=x^{3}+3 x^{2}+3 x-7\), then find the value of \(\frac{d f(x)}{d x}\) at \(x=2\).

    Solution

    Given:

    \(f(x)=x^{3}+3 x^{2}+3 x-7\)

    We know that:

    \(\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}\)

    Derivative of a constant, i.e.,

    \(\frac{\mathrm{d}(\text { constant })}{\mathrm{dx}}=0\)

    Therefore, 

    \(\frac{d f(x)}{d x}=3 x^{2}+6 x+3\)

    Putting \(x=2\) in above, we get:

    \(\frac{\mathrm{d} \mathrm{f}(\mathrm{x})}{\mathrm{dx}}=3(2)^{2}+6(2)+3\)

    \(=3(4)+12+3\)

    \(=12+12+3\)

    \(\frac{\mathrm{d} \mathrm{f}(\mathrm{x})}{\mathrm{dx}}=27\)

    The value of \(\frac{\mathrm{d} \mathrm{f}(x)}{\mathrm{dx}}\) at \(\mathrm{x}=2\) is 27.

  • Question 5
    3 / -1

    The conic \(x^{2}+x y+y^{2}+x+y=1\) is:

    Solution

    Given,

    Second degree equation, \(x^{2}+x y+y^{2}+x+y=1\)

    Compare with second-degree equation \(a x^{2}+2 h x y+b y^{2}+2 g x+\) \(2 f y+c=0\)

    So, \(a=1, b=1, h=0.5, g=0.5, f=0.5\) and \(c=-1\)

    Now, \(\Delta=a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}\)

    \(\Delta=1 \times 1 \times(-1)+2 \times 0.5 \times 0.5 \times 0.5-1 \times(0.5)^{2}-1 \times(0.5)^{2}-(-1) \times\) \((0.5)^{2}\)

    \(=-1-0.25-0.25-0.25+0.25\)

    So, \(\Delta=-1.5\)

    Now, \(h^{2}-a b=(0.5)^{2}-1 \times 1=-0.75\)

    So, \(h^{2}-a b<0\) and \(a=b\)

    It represents a circle.

  • Question 6
    3 / -1

    Find the conjugate of \(\frac{1+i}{1-i}\).

    Solution

    Let,

    \(z=\frac{1+i}{1-i}\)

    Multiplying by \((1+i)\) in numerator and denominator, we get

    \(z=\frac{1+i}{1-i} \times \frac{1+i}{1+i}\)

    \(\Rightarrow z=\frac{(1+i)^{2}}{1^{2}-i^{2}} \)

    \(\Rightarrow z=\frac{1+i^{2}+2 i}{1-i^{2}}\)

    \(\Rightarrow z=\frac{1+(-1)+2 i}{1-(-1)} \quad\left[\because i^{2}=-1\right] \)

    \(\Rightarrow z=\frac{0-2 i}{1+1}\)

    \(\Rightarrow z=\frac{-2 i}{2} \)

    \(\Rightarrow z=-i\)

    So, Conjugate of \(z=\bar{z}=i\)

  • Question 7
    3 / -1

    The quadratic equation \(7 x^{2}-28 x+21\) have roots \(\alpha\) and \(\beta\). And \(\frac{1}{\alpha}+\frac{1}{\beta}=\frac{k}{\alpha \beta}\) then find the value of \(k\).

    Solution

    Given,

    Quadratic equation \(7 x^{2}-28 x+21\)

    \( 7 x^{2}-28 x+21=0 \)

    \(\Rightarrow x^{2}-4 x+3=0 \)

    \(\Rightarrow x^{2}-x-3 x+3=0 \)

    \(\Rightarrow(x-1)(x-3)=0 \)

    \(\Rightarrow x=1,3\)

    Now,

    \( \frac{1}{\alpha}+\frac{1}{\beta}=\frac{k}{\alpha \beta} \)

    \(\Rightarrow \frac{1}{1}+\frac{1}{3}=\frac{k}{1 \times 3} \)

    \(\Rightarrow \frac{4}{3}=\frac{k}{3}\)

    \(\Rightarrow k=4\)

    So, the value of \(k\) is \(4\).

  • Question 8
    3 / -1

    From a pack of a well-shuffled deck of cards, two cards are drawn together at random. What is the probability of both the cards being Ace?

    Solution

    We know that,

    Probability \(=\frac{\text { Number of favorable outcomes }}{\text { Total outcomes }}\)

    Number of all combinations of \(\boldsymbol{n}\) things, taken \(r\) at a time, is given by \({ }^{n} C_{\tau}=\frac{n !}{(r) !(n-r) !}\)

    According to question,

    Total outcomes \(={ }^{52} C_{2}\)

    \(=\frac{52 !}{(2) !(50) !} \)

    \(=\frac{52 \times 51}{2}=1326\)

    Number of favorable outcomes \(={ }^{4} C_{2}=\frac{4 !}{(2) !(2) !}\) \(=\frac{4 \times 3 \times 2 \times 1}{2 \times 1 \times 2 \times 1}=6\)

    \(\therefore\) Probability \(=\frac{6}{1326}=\frac{1}{221}\)

  • Question 9
    3 / -1

    If the mean of a set of observations \(x_{1}, x_{2}, x_{3}, \ldots, x_{10}\) is 50 , then the mean of \(x_{1}+5, x_{2}+10, x_{3}+15, \ldots\), \(x_{10}+50\) is:

    Solution

    Given,

    Mean of a set of observations \(x_{1}, x_{2}, x_{3}, \ldots, x_{10}\) is 50.

    Here \(n=10\),

    \(\text { Mean }=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{10}}{10}=50\)

    \(\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{10}=500\)...(1)

    Now find out the mean of new observations \(x_{1}+5, x_{2}+10, x_{3}+15, \ldots, x_{10}+50\)

    Mean \(=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{\left(\mathrm{x}_{1}+5\right)+\left(\mathrm{x}_{2}+10\right)+\left(\mathrm{x}_{3}+15\right)+\ldots+\left(\mathrm{x}_{10}+50\right)}{10}\)

    \(=\frac{\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\ldots+\mathrm{x}_{10}\right)+(5+10+15+\ldots+50)}{10}\)

    From equation (1),

    \(=\frac{500+5(1+2+3+\ldots+10)}{10}\)

    \(=50+\frac{1}{2} \times \frac{10 \times 11}{2}\)

    \(=50+27.5\)

    \(=77.5\)

  • Question 10
    3 / -1

    If \(y=\cos ^{2} x^{2}\), find \(\frac{d y}{d x}\)

    Solution

    Here, \(y=\cos ^{2} x^{2}\)

    Let, \(x^{2}=t\)

    Differentiating with respect to \(x\), we get,

    \(\Rightarrow 2 x d x=d t\)

    \(\Rightarrow \frac{d t}{d x}=2 x\)..(1)

    \(y=\cos ^{2} t\)

    \(=\frac{\cos 2 t+1}{2}=\frac{\cos 2 t}{2}+\frac{1}{2}\)

    \(\frac{d y}{d x}=\frac{1}{2} \frac{d}{d t}(\cos 2 t) \frac{d t}{d x}+0\)

    \(=\frac{1}{2}(-2 \sin 2 t) \frac{d t}{d x}\) from eq (1)

    \(=-\sin 2 x^{2} \times 2 x\)

    \(=-4 x \cos x^{2} \sin x^{2}\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now