Let \(\mathrm{I}=\int \sqrt{\mathrm{x}} \mathrm{e}^{\sqrt{\mathrm{x}}} \mathrm{dx}\)
Substituting \(\sqrt{\mathrm{x}}=\mathrm{t},\) we get:
\(\frac{1}{2 \sqrt{\mathrm{x}}} \mathrm{dx}=\mathrm{d} \mathrm{t}\)
\(d x=2 t d t\)
\(\therefore \mathrm{I}=\int \mathrm{t} \times \mathbf{e}^{\mathrm{t}} \times 2 \mathrm{t} \mathrm{d} \mathrm{t}\)
Integrating by parts, taking \(\mathrm{t}^{2}\) as the first function and \(\mathrm{e}^{\mathrm{t}}\) as the second function, we get:
\(\mathrm{I}=2\left[\mathrm{t}^{2} \int \mathrm{e}^{\mathrm{t}} \mathrm{d} \mathrm{t}-\int\left(\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{t}^{2} \int \mathrm{e}^{\mathrm{t}} \mathrm{d} \mathrm{t}\right) \mathrm{dt}\right]+\mathrm{C}\)
\(\mathrm{I}=2 t^{2} e^{t}-4 \int t e^{t} d t+C\)
Integrating \(\int \mathrm{te}^{\mathrm{t}} \mathrm{dt}\) by parts, we get:
\(\mathrm{I}=2 \mathrm{t}^{2} \mathrm{e}^{\mathrm{t}}-4\left[\mathrm{t} \int \mathrm{e}^{\mathrm{t}} \mathrm{d} \mathrm{t}-\int\left(\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{t} \int \mathrm{e}^{\mathrm{t}} \mathrm{d} \mathrm{t}\right) \mathrm{dt}\right]+\mathrm{C}\)
\(\mathrm{I}=2 \mathrm{t}^{2} \mathrm{e}^{\mathrm{t}}-4\left(\mathrm{te}^{\mathrm{t}}-\mathrm{e}^{\mathrm{t}}\right)+\mathrm{C}\)
\(\mathrm{I}=\left(2 t^{2}-4 t+4\right) e^{t}+C\)
Back substituting \(\sqrt{\mathrm{x}}=\mathrm{t},\) we get:
\(\mathrm{I}=(2 \mathrm{x}-4 \sqrt{\mathrm{x}}+4) \mathrm{e}^{\sqrt{\mathrm{x}}}+\mathrm{C}\)