Self Studies

Mathematics Test - 15

Result Self Studies

Mathematics Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    Find the intervals in which the function f(x) is increasing , where f(x) is given by:

    f(x) = sin x + cos x, 0 ≤ x ≤ 2π

    Solution

    Given:

    \(f(x)=\sin x+\cos x\)

    \(f^{\prime}(x)=\frac{d}{d x}(\sin x+\cos x)\)

    \(f^{\prime}(x)=\cos x-\sin x\)

    Now putting \(f^{\prime}(x)=0\)

    \(\cos x-\sin x=0\)

    \(\sin x=\cos x\)

    \(\tan x=1\)

    \(x=\frac{\pi}{4}\) and \(\frac{5 \pi}{4} \quad\{\because 0 \leq x \leq 2 \pi\}\)

    For \(x \in\left(0, \frac{\pi}{4}\right), f^{\prime}(x)>0\) so, \(f(x)\) is increasing.

    For \(x \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right), f(x)<0\) so, \(f(x)\) is decreasing.

    For \({x} \in\left(\frac{5 \pi}{4}, 2 \pi\right), f^{\prime}({x})>0\) so, \(f(x)\) is increasing.

    \(\therefore x \in\left(0, \frac{\pi}{4}\right)\) and \(\left(\frac{5 \pi}{4}, 2 \pi\right)\)

  • Question 2
    3 / -1

    Solve the differential equation \(\frac{d y}{d x}+y \cos x=3 \cos x\).

    Solution

    \(\frac{d y}{d x}+y \cos x=3 \cos x \)

    \( I F=e^{\int \cos x d x} \)

    \( \Rightarrow I F=e^{\sin x}\)

    Now, \(y \times( IF )=\int Q ( IF ) dx\)

    \( \Rightarrow y \times e^{\sin x}=\int 3 \cos x \times e^{\sin x} d x \)

    \( \Rightarrow y e^{\sin x}=\int 3 e^{\sin x} \cos x~ d x\)

    Integrating, let \(\sin x=t \Rightarrow \cos x d x=d t\)

    \( \Rightarrow y e^{\sin x}=\int 3 e^t d t \)

    \( \Rightarrow y e^{\sin x}=3 e^t+c \)

    \( \Rightarrow y e^{\sin x}=3 e^{\sin x}+c\)

    (where \(c\) is integration constant)

  • Question 3
    3 / -1

    The number of spheres that can be made to pass through the three given points (1,0,0), (0,1,0) and (0,0,1) is:

    Solution

    The general equation of a sphere is (x - a)²+(y-b)² +(z - c)² = r², where (a, b, c) represents the center of the sphere,'r' represents the radius, and x, y, and z are the coordinates of the points on the surface of the sphere.

    Equation of sphere, x2 + y²+z2 + 2ux + 2vy + 2wz + d = 0 also it passes through (1,0,0), (0,1,0) and (0,0,1).

    When the sphere passes through (1,0,0), we get

    x² + y² + z² + 2ux + 2vy + 2wz + d = 0

    12+0+0+2u +0+0+d=0

    ⇒ 1+ 2u + d = 0

    2u d=-1

    When the sphere passes through (0,1,0), we get

    x² + y²+z² + 2ux + 2vy + 2wz + d = 0 → 1+2v + d = 0

    0+12+0+0+2v+0+d=0

    ⇒ 2v+d=-1 Similarly, when the sphere passes through (0,0,1), we get

    x² + y²+z² + 2ux + 2vy + 2wz + d = 0

    ⇒ 0+0+1+0+0+2w+ d = 0

    1+2w+d=0

    2w+ d=−1

    Clearly all the equation depends on the diameter, so there can be infinite number of sphere passing through these points.

  • Question 4
    3 / -1

    Find the value of \(\int \frac{d x}{\sqrt{(x+1)(x+2)}}\)

    Solution

    \(I\) = \(\int \frac{d x}{\sqrt{(x+1)(x+2)}}\)

    Let, \(u^2= x + 1\)

    \(⇒ 2u du = dx\)

    \(I=\int \frac{2 {u}}{{u} \sqrt{\left({u}^{2}+1\right)}} {du}\)

    \({I}=2 \int \frac{1}{\sqrt{{u}^{2}+1}} {du}\)

    \(I=2 \ln | \sqrt{{u}^{2}+1}+{u} |+{c}\)

    \(I=2 \ln |\sqrt{{x}+1+1}+\sqrt{{x}+1}|+{c}\)

    \({I}=2 \ln |\sqrt{{x}+2}+\sqrt{{x}+1}|+{c}\)

  • Question 5
    3 / -1

    Find \(\int\left(e^{x \log a}+e^{a \log x}+e^{a \log a}\right) d x\)

    Solution

    Given,

    \(I=\int\left(e^{x \log a}+e^{a \log x}+e^{a \log a}\right) d x\)

    It can be written as;

    \(I=\int\left(e^{\log a^{x}}+e^{\log x^{a}}+e^{\log a^{a}}\right) d x\)

    We know that \(e^{\log z}=z\)

    \(I=\int\left(a^{x}+x^{a}+a^{a}\right) d x\)

    \(=\int a^{x} d x+\int x^{a} d x+\int a^{a} d x\)

    \(\text { As } \int x^{n} d x=\frac{1}{n+1} x^{n+1}+c\)

    \(I=\frac{a^{x}}{\ln a}+\frac{x^{a+1}}{a+1}+a^{a} x+C\)

  • Question 6
    3 / -1

    The value of the integral \(\int_{0}^{1.5}\left[\mathrm{x}^{2}\right] \mathrm{dx},\) where \([\mathrm{x}]\) denotes the greatest integer \(\leq \mathrm{x},\) equals (approx.):

    Solution

    Given:

    \(\mathrm{I}=\int_{0}^{1.5}\left[\mathrm{x}^{2}\right] \mathrm{d} \mathrm{x}\)

    \(\mathrm{I}=\int_{0}^{1}\left[\mathrm{x}^{2}\right] \mathrm{d} \mathrm{x}+\int_{1}^{1.5}\left[\mathrm{x}^{2}\right] \mathrm{dx}\)

    For \(0 \leq \mathrm{x}<1,[\mathrm{x}]=0\)

    For \(1 \leq \mathrm{x}<2,[\mathrm{x}]=1\)

    \(\therefore \mathrm{I}=\int_{0}^{1}\left[0^{2}\right] \mathrm{d} \mathrm{x}+\int_{1}^{1.5}\left[1^{2}\right] \mathrm{d} \mathrm{x}\)

    \(\mathrm{I}=\int_{1}^{1.5} \mathrm{dx}\)

    \(\mathrm{I}=[\mathrm{x}]_{1}^{1.5}\)

    \(\mathrm{I}=1.5-1=0.5\)

  • Question 7
    3 / -1

    What is the general solution of the differential equation \(x^{2} d y+y^{2} d x=0\)?

    Solution

    Given:

    \(x^{2} d y+y^{2} d x=0\)

    \(\Rightarrow \frac{d y}{y^{2}}=-\frac{d x}{x^{2}}\)

    Now, by integrating both the sides we get

    \(\Rightarrow \int y^{-2} d y+\int x^{-2} d x=0\)

    \(\Rightarrow-\frac{1}{y}-\frac{1}{x}=-C_{1}\)

    \(\Rightarrow \frac{1}{y}+\frac{1}{x}=C_{1}\)

    \(\Rightarrow x+y=C_{1}(x y)\)

    \(\Rightarrow C(x+y)=x y,\) where \(C=\frac{1}{c_{1}}\)

  • Question 8
    3 / -1

    Find the differential coefficient of \(\tan ^{-1} \frac{x}{\sqrt{\left(a^{2}-x^{2}\right)}}\).

    Solution

    Let \(y=\tan ^{-1} \frac{x}{\sqrt{\left(a^{2}-x^{2}\right)}} \ldots\) (i)

    Put \(x=a \sin \theta\)

    \(\theta=\sin ^{-1}\left(\frac{x}{a}\right)\)

    Then,

    \(\tan y=\frac{a \sin \theta}{\sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}}\)

    As we know,

    \(\cos \theta=\sqrt{1-\sin ^{2} \theta}\)

    \(\frac{\sin \theta}{\cos \theta}=\tan \theta\)

    \(\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{a^{2}-x^{2}}}\)

    \(\tan y=\frac{a \sin \theta}{a \cos \theta}\)

    \(\tan y=\tan \theta\)

    \(y=\theta=\sin ^{-1} \frac{x}{a}\)

    \(\frac{d y}{d x}=\frac{1}{\sqrt{1-\frac{x^{2}}{a^{2}}}} \cdot \frac{1}{a}\)

    \(=\frac{1}{\sqrt{a^{2}-x^{2}}}\)

  • Question 9
    3 / -1

    If the roots of the equation \(3 a x^{2}+2 b x+c=0\) are in the ratio \(3: 2\), then which one of the following is correct?

    Solution

    Given,

    \(3 a x^{2}+2 b x+c=0\)

    If \(\alpha, \beta\) are the roots of quadratic equation \(a x^{2}+b x+c=0\), then

    Sum of roots \(=\alpha+\beta=\frac{-b}{a}\)

    Product of roots \(=\alpha \times \beta=\frac{c}{a}\)

    Comparing with standard quadratic equation \(a x^{2}+b x+c=0\), we get \(a=3 a, b=2 b\)

    Roots are in the ratio \(3: 2\).

    Let, roots are \(3 \alpha\) and \(2 \alpha\).

    Sum of roots \(=3 \alpha+2 \alpha=\frac{-2 b}{3 a}\)

    \(\Rightarrow 5 \alpha=\frac{-2 b}{3 a}\)

    \(\Rightarrow \alpha=\frac{-2 b}{15 a}\)

    \(\Rightarrow \alpha^{2}=\frac{4 b^{2}}{15 \times 15 a^{2}}\)

    Now, product of roots \(=3 \alpha \times 2 \alpha=\frac{c}{3 a}\)

    \(\therefore 6 \alpha^{2}=\frac{c}{3 a}\)

    \(\Rightarrow 6\left(\frac{4 b^{2}}{15 \times 15 a^{2}}\right)=\frac{c}{3 a}\)

    \(\Rightarrow 6 \times \frac{4 b^{2} \times 3 a}{15 \times 5 a}=c\)

    \(\Rightarrow 2 \times 4 b^{2}=25 a c\)

    \(\Rightarrow 8 b^{2}=25 a c\)

  • Question 10
    3 / -1

    Integrating factor of \(\left(1-x^2\right) \frac{d y}{d x}-x y=1\) is:

    Solution

    The given first-order ordinary differential equation is \(\left(1-x^2\right) \frac{d y}{d x}-x y=1\).

    Dividing both sides by \(1- x ^2\), we can get it in the standard form.

    \( \Rightarrow \frac{ dy }{ dx }+\left(\frac{- x }{1- x ^2}\right) y =\frac{1}{1- x ^2} \)

    \(\therefore P =\frac{- x }{1- x ^2} .\)

    Let's calculate \(\int Pdx\).

    \(\int P d x=\int \frac{-x}{1-x^2} d x\)

    Substituting \(1-x^2=t\), so that \(-2 x d x=d t\), we get:

    \(\Rightarrow \int Pdx =\frac{1}{2} \int \frac{1}{ t } dt\)

    Using \(\int \frac{1}{x} d x=\log x+C\) and ignoring the constant \(C\), we get:

    \(\Rightarrow \int Pdx =\frac{1}{2} \log t\)

    Back substituting \(1-x^2=t\), we get:

    \( \Rightarrow \int Pdx =\frac{1}{2} \log \left(1- x ^2\right) \)

    \( \Rightarrow \int Pdx =\log \sqrt{1- x ^2}\)

    Now, the integrating factor will be:

    \(F = e ^{\int P dx } \)

    \( \Rightarrow F = e ^{\log \sqrt{1- x ^2}} \)

    \( \Rightarrow F =\sqrt{1- x ^2} \) which is the required integrating factor.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now