Self Studies

Mathematics Test - 16

Result Self Studies

Mathematics Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    The value of \(\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x\) is equal to:

    Solution

    Given,

    \(\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x\)

    Let \(I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x\)

    Using \(\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x\), we get

    \(\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x\)

    \(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left(1+\frac{1-\tan x}{1+\tan x}\right) d x\)

    \(\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1+\tan x}\right) d x\)

    \(\Rightarrow I=\int_{0}^{\frac{\pi}{4}}(\log 2) d x-\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x\)

    \(\Rightarrow I=(\log 2) \int_{0}^{\frac{\pi}{4}} 1 d x-I\)

    \(\Rightarrow 2 \mathrm{I}=(\log 2)[\mathrm{x}]_{0}^{\frac{\pi}{4}}\)

    \(\Rightarrow 2 \mathrm{I}=(\log 2)\left(\frac{\pi}{4}\right)\)

    \(\Rightarrow \mathrm{I}=\frac{\pi}{8} \log 2\)

    \(\therefore \int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2\)

  • Question 2
    3 / -1

    If \([\vec{a} \vec{b} \vec{c}]=1\), then the value of \(\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{\vec{c} \times \vec{a} \cdot \vec{b}}+\frac{\vec{b} \cdot \vec{c} \times \vec{a}}{\vec{a} \times \vec{b} \cdot \vec{c}}+\frac{\vec{c} \cdot \vec{a} \times \vec{b}}{\vec{b} \times \vec{c} \cdot \vec{a}}\) is

    Solution

    Given,

    \([\vec{a} \vec{b} \vec{c}]=1\)

    Take L.H.S. \(\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{\vec{c} \times \vec{a} \cdot \vec{b}}+\frac{\vec{b} \cdot \vec{c} \times \vec{d}}{\vec{a} \times \vec{b} \cdot \vec{c}}+\frac{\vec{c} \cdot \vec{a} \times \vec{b}}{\vec{b} \times \vec{d} \cdot \vec{a}}\)

    \(=\frac{[\vec{a} b \vec{c}]}{[\vec{d} \vec{a} \vec{b}]}+\frac{\mid \vec{b} \overrightarrow{c a}]}{[\vec{a} \vec{b} \vec{c}]}+\frac{[\vec{c} a \vec{b}]}{[\vec{b} \vec{c} d]} \)

    \(=1+1+1 \)

    \(=3\)

  • Question 3
    3 / -1

    Find the value of \(∫e^x cos x\) dx.

    Solution

    Given: \(I = ∫ e^x cos x dx\)

    Integrating by ILATE rule,

    \(I = cos x ∫ e^x dx - ∫ (-sin x ∫ e^x dx) dx\)

    \(I = e^x cos x + ∫ e^x sin x dx\)

    \(I = e^x cos x + sin x ∫ e^x dx - ∫ (cos x ∫ e^x dx) dx\)

    \(I = e^x cos x + e^x sin x - ∫ e^x cos x dx\)

    \(I = e^x cos x + e^x sin x - I\)

    \(2I = e^x cos x + e^x sin x\)

    \(I=\frac{e^{x} \cos x+e^{x} \sin x}{2}\)

  • Question 4
    3 / -1

    If \(\frac{\operatorname{cosec} \theta+\sin \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{21}{15}\), then the value of \(\tan \theta\) is equal to-

    Solution

    Given:

    \(\frac{\operatorname{cosec} \theta+\sin \theta}{\operatorname{cosec} \theta-\sin \theta}=\frac{21}{15}\)

    Using componendo & dividendo

    \(\frac{\operatorname{cosec} \theta+\sin \theta+\operatorname{cosec}\theta-\sin \theta}{\operatorname{cosec} \theta+\sin \theta-\operatorname{cosec} \theta+\sin \theta}=\frac{21+15}{21-15}\)

    \(\Rightarrow \frac{\operatorname{cosec} \theta}{\sin \theta}=\frac{36}{6}=6\)

    \(\Rightarrow \operatorname{cosec}^{2} \theta=6\)

    We know that,

    \(1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta\)

    \(\cot ^{2} \theta=6-1=5\)

    \(\tan \theta=\frac{1}{\sqrt{5}}\)

  • Question 5
    3 / -1

    Find the numerical value of \(\frac{2}{1+\cot ^{2} \theta}+\frac{4}{1+\tan ^{2} \theta}+2 \sin ^{2} \theta\).

    Solution

    Given that,

    \(\frac{2}{1+\cot ^{2} \theta}+\frac{4}{1+\tan ^{2} \theta}+2 \sin ^{2} \theta\)

    We know that,

    \(\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta\) and \(\sec ^{2} \theta=1+\tan ^{2} \theta\)

    So,

    \(\frac{2}{\operatorname{cosec}^{2} \theta}+\frac{4}{\sec ^{2} \theta}+2 \sin ^{2} \theta\)

    \(\Rightarrow 2 \sin ^{2} \theta+4 \cos ^{2} \theta+2 \sin ^{2} \theta\)

    \(\Rightarrow 4 \sin ^{2} \theta+4 \cos ^{2} \theta=4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=4\)

    \(\therefore\) The numerical value of \(\frac{2}{1+\cot ^{2} \theta}+\frac{4}{1+\tan ^{2} \theta}+2 \sin ^{2} \theta\) is \(4\).

  • Question 6
    3 / -1

    What is the degree of the differential equation \(\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}+2\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right)-\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}=0 ?\)

    Solution

    Given:

    \(\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}+2\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right)-\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}=0\)

    For the given differential equation the highest order derivative is 3.

    Now, the power of the highest order derivative is 1.

    We know that, the degree of a differential equation is the power of the highest derivative.

    So, the degree of the differential equation is 1.

  • Question 7
    3 / -1

    If \(y=(\tan x)^{\tan x^{\tan x}}\) then the value of \(\frac{d y}{d x}\) at \(x=\frac{\pi}{4}\)

    Solution

    Given,

    \(y=(\tan x)^{\tan x^{\tan x} \cdots(1)}\)

    As we know,

    \(\log _{b}\left(M^{p}\right)=p \log _{b}(M)\)

    \(\log _{b}(M N)=\log _{b}(M)+\log _{b}(N)\)

    Taking log on both sides, we get

    \(\log y=\log (\tan x)^{\tan x^{\tan x}}\)

    \(\log y=(\tan x)^{\tan x} \log (\tan x)\)

    Again, taking log on both sides, we get

    \(\log (\log y)=\log (\tan x)^{\tan x}+\log (\log (\tan x))\) \(\log (\log y)=\tan x \log (\tan x)+\log (\log (\tan x))\)

    As we know,

    \(\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]\)

    \(\frac{d}{d x} \tan x=\sec ^{2} x\)

    \(\frac{d}{d x} \log x=\frac{1}{x}\)

    Now, differentiating with respect to \(x\), we get

    \(\frac{1}{\log y} \cdot \frac{1}{y} \cdot \frac{d y}{d x}=\tan x\left(\frac{\sec ^{2} x}{\tan x}\right)+\sec ^{2} x \log (\tan x)+\frac{1}{\log (\tan x)} \cdot \frac{1}{\tan x} \cdot \sec ^{2} x\)

    \(\frac{d y}{d x}=y \log y\left[\tan x\left(\frac{\sec ^{2} x}{\tan x}\right)+\sec ^{2} x \log (\tan x)+\frac{1}{\log (\tan x)} \cdot \frac{1}{\tan x} \cdot \sec ^{2} x\right]\)

    At \(x=\frac{\pi}{4}\),

    From equation (1), we get

    \(y=\left(\tan \frac{\pi}{4}\right)^{\tan \frac{\pi}{4} \tan \frac{\pi}{4}}\)

    \(y=1^{1^{1}}=1\)

    \(\log y=\log 1=0\)

    So, \(\frac{d y}{d x}\left(x=\frac{x}{4}\right)=0\)

  • Question 8
    3 / -1

    The second degree equation \(2 x^{2}+2 y^{2}-2 x-6 y+5=0\) represent:

    Solution

    We know that equation of circle is,

    \(x^{2}+y^{2}+2 g x+2 f y+c=0 \text {...(1) }\)

    whose, centre \(=(-g,-f)\) and radius \(=\sqrt{g^{2}+f^{2}-c}\).

    Given,

    \(x^{2}+y^{2}-x-3 y+\frac{5}{2}=0\)

    On comparing above equation with equation (1), we get

    \(2 g x=-x, 2 f y=-3 y\)

    \(g=-\frac{1}{2}, f=-\frac{3}{2}, c=\frac{5}{2}\)

    Then, Centre \(=\left(\frac{1}{2}, \frac{3}{2}\right)\)

    \(\text { Radius }=\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(-\frac{3}{2}\right)^{2}-\left(\frac{5}{2}\right)} \)

    \(=\sqrt{\frac{1}{4}+\frac{9}{4}-\frac{5}{2}} \)

    \(=\sqrt{\frac{1+9-10}{4}} \)

    \(=0\)

    Thus, we can say that a circle whose radius is zero represents a point.

  • Question 9
    3 / -1

    If a straight line makes angles \(\alpha, \beta\) and \(\gamma\) with the co-ordinate axes, then \(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\) is equal to:

    Solution

    If a line makes \(\alpha, \beta, \gamma\) angle with the co-ordinate axis. Then, \(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\)

    As we know, \(\cos ^{2} \alpha=1-\sin ^{2} \alpha\)

    \(\left(1-\sin ^{2} \alpha\right)+\left(1-\sin ^{2} \beta\right)+\left(1-\sin ^{2} \gamma\right)=1 \)

    \(\Rightarrow 3-\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right)=1 \)

    \(\Rightarrow\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right)=2\)

    \(\therefore\left(\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma\right)=2\)

  • Question 10
    3 / -1

    Minimize \(\mathrm{Z}=7 \mathrm{x}+\mathrm{y}\) subject to

    \(5 x+y \geq 5, x+y \geq 3, x \geq 0, y \geq 0 \text {. }\)

    Solution

    Given:

    \(Z=7 x+y\) subject to \(5 x+y \geq 5, x+y \geq 3, x \geq 0, y \geq 0\)

    First we draw the lines \(A B\) and \(C D\) whose equations are \(5 x+y=5\) and \(x+y=3\) respectively.

    Line Inequation

    Point on x

    Point on y

    Sign Feasible
    AB 5x+y=5 A(1,0) B(0,5) Non - origin side AB
    CD x+y=3 C(3,0)   Non - origin side of line CD

    Common feasible region \(BPC\)

    Points Minimize z =7x+y
    B(0,5) Z(B)=7(0)+5=5
    P(12,52) Z(P)=7×12+52=6
    C(3,0) Z(C)=7×(3)+0=21

    \(Z\) is minimum at \(x=0, y=5\) and \(\min (Z)=5\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now