Self Studies

Mathematics Test - 17

Result Self Studies

Mathematics Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    If the vectors \(2 \hat{i}+\hat{j}+\hat{k}\) and \(\hat{i}-4 \hat{j}+\lambda \hat{k}\) are mutually perpendicular, then the value of \(\lambda\) is:

    Solution

    The scalar product (or dot product) of two non-zero vector and denoted by \(\vec{a} \cdot \vec{b}\) is defined as,

    \(\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta=a b \cos \theta \quad \ldots\) (1)

    Case: If both the vectors are perpendicular then, \(\theta=90^{\circ}\).

    Form equation (1) \(\vec{a} \cdot \vec{b}=a b \cdot \cos 90^{\circ}\)

    \(\vec{a} \cdot \vec{b}=a b \times 0 \Rightarrow \vec{a} \cdot \vec{b}=0 \quad \ldots(2)\)

    Given, \(\vec{a}=2 \hat{i}+\hat{j}+\hat{k}\) and \(\vec{b}=\hat{i}-4 \hat{j}+\lambda \hat{k}\)

    Are mutually perpendicular then by equation (2),

    \(\vec{a} \cdot \vec{b}=0\)

    \(\Rightarrow(2 \hat{i}+\hat{j}+\hat{k}) \cdot(\hat{i}-4 \hat{j}+\lambda \hat{k})=0 \)

    \(\Rightarrow(2 \times 1)(-4 \times 1)+(1 \times \lambda)=0 \)

    \(\Rightarrow 2-4+\lambda=0 \)

    \(\lambda=2\)

  • Question 2
    3 / -1

    If \(p=\sin \theta+\cos \theta\) and \(q=\sec \theta+\operatorname{cosec} \theta\), then \(q\left(p^{2}-1\right)\) is:

    Solution

    Given,

    \(\sin \theta+\cos \theta=p \), \(\sec \theta+\operatorname{cosec} \theta=q \)

    \(p^{2}=(\sin \theta+\cos \theta)^{2} \)= \(p^{2}=\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta \)

    \(p^{2}=1+2 \sin \theta \cos \theta \)

    \(q\left(p^{2}-1\right)=(\sec \theta+\operatorname{cosec} \theta)(1+2 \sin \theta \cos \theta-1) \)

    \(\Rightarrow p\left(p^{2}-1\right)=(\sec \theta+\operatorname{cosec} \theta)(2 \sin \theta \cos \theta) \) \(=\left(\frac{1}{\cos \theta}+\frac{1}{\sin \theta}\right)(2 \sin \theta \cos \theta) \)

    \(=2 \sin \theta+2 \cos \theta \) \(=2(\sin \theta+\cos \theta) \)

    \(=2 p \)

  • Question 3
    3 / -1

    Differentiate the function \(f(t)=\sqrt{t}(a+b t)\).

    Solution

    Given,

    \(f(t)=\sqrt{t}(a+b t)\)

    As we know,

    \(\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)] \)

    \(\frac{d}{d x}\left(x^n\right)=n x^{n-1}\)

    Differentiating with respect to \(t\), we get

    \(f^{\prime}(t)=\sqrt{t} \frac{d}{d t}(a+b t)+(a+b t) \frac{d}{d t}(\sqrt{t})\)

    \(=\sqrt{t} \cdot b+(a+b t) \cdot \frac{1}{2} t^{\frac{-1 }{ 2}} \)

    \(=b \sqrt{t}+\frac{a+b t}{2 \sqrt{t}}\)

    \(=\frac{a+3 b t}{2 \sqrt{t}}\)

  • Question 4
    3 / -1

    If \(\cos ^{4} \theta-\sin ^{4} \theta=\frac{1}{3}\), then the value of \(\tan ^{2} \theta\) is:

    Solution

    Given:

    \(\cos ^{4} \theta-\sin ^{4} \theta=\frac{1}{3}\)

    \(a^{2}-b^{2}=(a-b)(a+b)\)

    \(\Rightarrow\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{1}{3}\)

    \(\Rightarrow\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\frac{1}{3} \quad\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)\)

    \(\Rightarrow \cos 2 \theta=\frac{1}{3} \quad\left(\because \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta\right)\)

    and \(\cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\)

    \(\frac{1}{3}=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\)

    By cross multiplication,

    \(1+\tan ^{2} \theta=3\left(1-\tan ^{2} \theta\right)\)

    \(\Rightarrow 1+\tan ^{2} \theta=3-3 \tan ^{2} \theta\)

    \(\Rightarrow 4 \tan ^{2} \theta=3-1\)

    \(\Rightarrow 4 \tan ^{2} \theta=2\)

    \(\therefore \tan ^{2} \theta=\frac{1}{2}\)

  • Question 5
    3 / -1

    What is the value of \((-1+i \sqrt{3})^{48}\) ?

    Solution

    Given,

    \((-1+i \sqrt{3})^{48}\)

    Consider \(z=(x+i y)=(-1+i \sqrt{3})\)

    \(\therefore x=1 \text { and } y=\sqrt{3}\)

    The polar form of the complex number is given by,

    \(z=r(\cos \theta+i \sin \theta)\)

    Where \(r=\sqrt{x^{2}+y^{2}}\) and \(\theta=\tan ^{-1}\left(\frac{y}{x}\right)\)

    So,

    \(r=\sqrt{1^{2}+(\sqrt{3})^{2}}=2\)

    \(\theta=\tan ^{-1}\left(\frac{\sqrt{3}}{1}\right)=\frac{\pi}{3}\)

    \(\Rightarrow z=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\)

    \(\Rightarrow z^{48}=\left[2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\right]^{48}\)

    \(\Rightarrow z^{48}=2^{48}\left(\cos \left(48 \times \frac{\pi}{3}\right)+i \sin \left(48 \times \frac{\pi}{3}\right)\right.\)

    \(\Rightarrow z^{48}=2^{48}[\cos (16 \pi)+i \sin (16 \pi)]\)

    \(\Rightarrow z^{48}=2^{48}[1+i(0)]\)

    \(\Rightarrow z^{48}=2^{48}\)

    So, the value of \((-1+i \sqrt{3})^{48}=2^{48}\)

  • Question 6
    3 / -1

    Find the value of \(\frac{d}{d x}\left(\frac{x^2+x-2}{x^3+6}\right)\).

    Solution

    Given,

    \(\frac{d}{d x}\left(\frac{x^2+x-2}{x^3+6}\right)\)

    As we know,

    \(\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^2} \)

    \(\frac{d}{d x}\left(x^n\right)=n x^{n-1}\)

    Differentiating with respect to \(x\), we get

    \(=\frac{\left(x^3+6\right) \frac{d}{d x}\left(x^2+x-2\right)-\left(x^2+x-2\right) \frac{d}{d x}\left(x^3+6\right)}{\left(x^3+6\right)^2}\)

    \(=\frac{\left(x^3+6\right)(2 x+1)-\left(x^2+x-2\right)\left(3 x^2\right)}{\left(x^3+6\right)^2} \)

    \(=\frac{\left(2 x^4+x^3+12 x+6\right)-\left(3 x^4+3 x^3-6 x^2\right)}{\left(x^3+6\right)^2} \)

    \(=\frac{-x^4-2 x^3+6 x^2+12 x+6}{\left(x^3+6\right)^2}\)

  • Question 7
    3 / -1

    Region represented by the in equation system \(x+y \leq 3, y \leq 6\) and \(x \geq 0, y \geq 0\) is:

    Solution

    Given:

    \(x+y \leq 3, y \leq 6\) and \(x \geq 0, y \geq 0\)

    Converting the given in equations into equations

    \(x+y=3\).......(1)

    \(y=6 \ldots \text {...(2) }\)

    Reglon represented by \(x+y \leq 3\) :

    The line \(x+y=3\) meets the coordinate axes are \(\mathrm{A}(3,0)\) and \(\mathrm{B}(0,3)\) respectively,

    \(x+y=3\)

    \(\begin{array}{|l|l|l|} \hline \mathrm{x} & 3 & 0 \\ \hline \mathrm{y} & 0 & 3 \\ \hline \end{array}\)

    \(\mathrm{A}(3,0) ; \mathrm{B}(0,3)\)

    Join points \(A\) and \(B\) to obtain the line.

    Clearly, \((0,0)\) satisfies the in equation \(x+y \leq 3\).

    So, the region containing the origin represent the solution set of the in equation.

    Reglon represented by \(y \leq 6\) :

    The line \(y=6\) is parallel to \(x\)-axis and its every point will satisfy the in equation in first, quadrant, region containing the origin represents the solution set of this in equation.

    Reglon represented by \(x \geq 0\) and \(y \geq 0\) :

    Since every point in first quadrant satisfy the in equations, so the first quadrant is the solution set of these in equations.

    The shaded region is the common region of in equations. This is feasible region of solution which is bounded and is in first quadrant.

  • Question 8
    3 / -1

    The conjugate of \(\frac{(2-i)(1+2 i)}{(3+i)(2-3 i)}\) is:

    Solution

    Given,

    \(z=\frac{(2-i)(1+2 i)}{(3+i)(2-3 i)}\)

    \(\Rightarrow z=\frac{2+4 i-i-2 i^{2}}{6-9 i+2 i-3 i^{2}}\)

    \(\Rightarrow z=\frac{2+4 i-i-2 i^{2}}{6-9 i+2 i-3 i^{2}}\)

    \(\Rightarrow z=\frac{2+4 i-i+2}{6-9 i+2 i+3} \quad\left[\because i^{2}=-1\right]\)

    \(\Rightarrow z=\frac{4+3 i}{9-7 i}\)

    Multiplying by \((9+7 i)\) in numerator and denominator, we get

    \(z=\frac{4+3 i}{9-7 i} \times \frac{9+7 i}{9+7 i}\)

    \(\Rightarrow z=\frac{36+28 i+27 i+21 i^{2}}{81-49 i^{2}}\)

    \(\Rightarrow z=\frac{36+28 i+27 i-21}{81+49} \quad\left[\because i^{2}=-1\right]\)

    \(\Rightarrow z=\frac{15+55 i}{130}\)

    \(\Rightarrow z=\frac{15}{130}+i \frac{55}{130}\)

    As we know,

    Conjugate of \(z=\bar{z}=x-i y\)

    \(\therefore \bar{z}=\frac{15}{130}-i \frac{55}{130}\)

  • Question 9
    3 / -1

    A box contains 5 green pencils and 7 yellow pencils. Two pencils are chosen at random from the box without replacement. What is the probability they are both yellow?

    Solution

    Event A is choosing a yellow pencil first, and Event \(\mathrm{B}\) is choosing a yellow pencil second.

    Initially, there are 12 pencils, 7 of which are yellow.

    Probability the first pencil is yellow \(=\mathrm{P}(\mathrm{A})=\frac{7}{12}\)

    If a yellow pencil is chosen, there will be 11 pencils left, 6 of which are yellow.

    Probability the second pencil is yellow \(=\mathrm{P}(\mathrm{B})=\frac{6}{11}\)

    Two pencils are chosen at random from the box without replacement.

    So events are independent of each other.

    Probability they are both yellow:

    \(=P(A \cap B)=P(A) \times P(B)\)

    \(=\frac{7}{12} \times \frac{6}{11}=\frac{7}{22}\)

  • Question 10
    3 / -1

    The area (in square units) bounded by the lines x = 0, y = 0, x + y = 1 and 2x + 3y = 6 is:

    Solution

    The given question is equivalent to finding the area bounded by the lines f(x, y) = x + y - 1 = 0, g(x, y) = 2x + 3y - 6 = 0, the x-axis (y = 0) and the y-axis (x = 0)

    f(x, y) meets the x-axis at x + 0 - 1 = 0 ⇒ x = 1 ⇒ (1, 0)

    f(x, y) meets the y-axis at 0 + y - 1 = 0 ⇒ y = 1 ⇒ (0, 1)

    g(x, y) meets the x-axis at 2x + 0 - 6 = 0 ⇒ x = 3 ⇒ (3, 0)

    g(x, y) meets the y-axis at 0 + 3y - 6 = 0 ⇒ y = 2 ⇒ (0, 2)

    The resulting figure made by the four lines is as follows:

    The required (shaded) area is: (Area of Δ made by g(x, y), the x-axis and the y-axis) - (Area of Δ made by f(x, y), the x-axis and the y-axis)

    \(=\frac{1}{2} \times 2 \times 3-\frac{1}{2} \times 1 \times 1\)

    \(=3-\frac{1}{2}\)

    \(=2 \frac{1}{2}\) sq.units

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now