Self Studies

Mathematics Test - 26

Result Self Studies

Mathematics Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    If the sum of two of the roots of x+ px2 + qx + r = 0 is zero, then pq =

    Solution

  • Question 2
    3 / -1

    Solution

  • Question 3
    3 / -1

    Solution

  • Question 4
    3 / -1

    sin-1 (sin 10 ) =

    Solution

  • Question 5
    3 / -1

    Solution

  • Question 6
    3 / -1

    Solution

  • Question 7
    3 / -1

    Solution

  • Question 8
    3 / -1

    If \(f(x)=\sqrt{x}, ~g(x)=e^{x}-1\), and \(\int \operatorname{fog}(x) d x=A \operatorname{fog}(x)+B \operatorname{tan}^{-1}(\operatorname{fog}(x))+C\), then \(A+B\) is equal to:

    Solution

    It is given that, \(f(x)=\sqrt{x}\) and \( g(x)=e^{x}-1\)

    Therefore, \(\operatorname{fog}(x)= f(g(x))=\sqrt{e^{x}-1}\)

    Now, it is also given that,

    \(\int \operatorname{fog}(x) d x=A \operatorname{fog}(x)+ B \operatorname{tan}^{-1}(\operatorname{fog}(x))+C\) ----(1)

    Therefore,

    \(\Rightarrow \int \operatorname{fog}(x)~ d x=\int \sqrt{e^{x}-1} ~d x\) ----(2)

    Let \(t=\sqrt{e^{x}-1}\)

    \(\Rightarrow t^2= e^x-1\)

    Differentiating both sides, we get,

    \(\Rightarrow 2t~dt=e^x~dx\)

    \(\Rightarrow 2t~dt=t^2+1~dx \quad (\because t^2= e^x-1)\)

    \(\Rightarrow \frac{2t}{t^2+1}~dt = dx\)

    Substituting this value in equation (2), we get,

    \(\Rightarrow\int t.\frac{2 t}{t^{2}+1} ~d t=\int \frac{2 t^{2}}{t^{2}+1} ~d t\)

    \(\Rightarrow2\int \frac{ t^{2}+1-1}{t^{2}+1} ~d t\)

    \(\Rightarrow2\int \frac{ t^{2}+1}{t^{2}+1} ~d t -2\int\frac{dt}{t^{2}+1}\)

    \(\Rightarrow2\int d t -2\int\frac{dt}{t^{2}+1}\)

    \(\Rightarrow2 t-2 \tan ^{-1} t+C\)

    Putting \(t=\sqrt{e^{x}-1}\),

    \(\Rightarrow2 \sqrt{e^{x}-1}-2 \tan ^{-1}\left(\sqrt{e^{x}-1}\right)+C\)

    We can write this equation as,

    \(=2 \operatorname{fog}(x)-2 \tan ^{-1}(\operatorname{fog}(x))+C\)

    Comparing this equation with equation (1), we get \(A=2\) and \(B=-2\)

    Therefore, \(A+B=2+(-2)=0\)

  • Question 9
    3 / -1

    Solution

  • Question 10
    3 / -1

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now