It is given that, \(f(x)=\sqrt{x}\) and \( g(x)=e^{x}-1\)
Therefore, \(\operatorname{fog}(x)= f(g(x))=\sqrt{e^{x}-1}\)
Now, it is also given that,
\(\int \operatorname{fog}(x) d x=A \operatorname{fog}(x)+ B \operatorname{tan}^{-1}(\operatorname{fog}(x))+C\) ----(1)
Therefore,
\(\Rightarrow \int \operatorname{fog}(x)~ d x=\int \sqrt{e^{x}-1} ~d x\) ----(2)
Let \(t=\sqrt{e^{x}-1}\)
\(\Rightarrow t^2= e^x-1\)
Differentiating both sides, we get,
\(\Rightarrow 2t~dt=e^x~dx\)
\(\Rightarrow 2t~dt=t^2+1~dx \quad (\because t^2= e^x-1)\)
\(\Rightarrow \frac{2t}{t^2+1}~dt = dx\)
Substituting this value in equation (2), we get,
\(\Rightarrow\int t.\frac{2 t}{t^{2}+1} ~d t=\int \frac{2 t^{2}}{t^{2}+1} ~d t\)
\(\Rightarrow2\int \frac{ t^{2}+1-1}{t^{2}+1} ~d t\)
\(\Rightarrow2\int \frac{ t^{2}+1}{t^{2}+1} ~d t -2\int\frac{dt}{t^{2}+1}\)
\(\Rightarrow2\int d t -2\int\frac{dt}{t^{2}+1}\)
\(\Rightarrow2 t-2 \tan ^{-1} t+C\)
Putting \(t=\sqrt{e^{x}-1}\),
\(\Rightarrow2 \sqrt{e^{x}-1}-2 \tan ^{-1}\left(\sqrt{e^{x}-1}\right)+C\)
We can write this equation as,
\(=2 \operatorname{fog}(x)-2 \tan ^{-1}(\operatorname{fog}(x))+C\)
Comparing this equation with equation (1), we get \(A=2\) and \(B=-2\)
Therefore, \(A+B=2+(-2)=0\)