Self Studies

Mathematics Test - 6

Result Self Studies

Mathematics Test - 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    The derivative of sin-1 (2x2 - 1) w.r.t sin-1 x is

    Solution

    Let , y = sin-1 (2x2 - 1) and z = sin-1 x

    Differentiate both the function w.r.t to x

    \(\Rightarrow \frac{d y}{d x}=\frac{d \sin ^{-1}\left(2 x^{2}-1\right)}{d x}\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\left(2 \mathrm{x}^{2}-1\right)^{2}}} \times(4 \mathrm{x}-0)\)

    \(\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2}{\sqrt{1-\mathrm{x}^{2}}}\)     .....(i)

    Similarly,

    \(\frac{\mathrm{d} z}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)     .....(ii)

    We know that, \(\frac{\mathrm{dy}}{\mathrm{d} z}=\frac{\frac{\mathrm{dy}}{\mathrm{d} x}}{\frac{\mathrm{d} \mathrm{z}}{\mathrm{dx}}}\)

    \(\therefore \frac{\mathrm{dy}}{\mathrm{dz}}=\frac{\frac{2}{\sqrt{1-\mathrm{x}^{2}}}}{\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}=2\)

  • Question 2
    3 / -1

    Consider the following statements in respect of the differential equation

    d2ydx2+cosdydx=0

    1. The degree of the differential equation is not defined.

    2. The order of the differential equation is 2

    Which of the above statements is correct?

    Solution

    d2ydx2+cosdydx=0

    1. As the given differential equation is not a polynomial equation in derivatives, the degree of this equation is not defined

    So, this statement is true

    2. Here Highest derivative:d2ydx2

    ∴ Order = 2

  • Question 3
    3 / -1

    In the following trigonometry expression, find the value of (MN).

    \(\frac{(1+\cos x)}{(1-\sin x)}(\sin x+\cos x-1)^{2}=M \sin ^{N} x\)

    Solution

    Given,

    \(\frac{(1+\cos x)}{(1-\sin x)}(\sin x+\cos x-1)^{2}=M \sin ^{N} x\)

    \(\Rightarrow \frac{(1+\cos x)}{(1-\sin x)}(\sin x+\cos x-1)^{2}=M \sin ^{N} x\)

    \(\Rightarrow \frac{(1+\cos x)}{(1-\sin x)} \times 2(1-\sin x)(1-\cos x)=M \sin ^{N} x\)

    \(\Rightarrow 2(1+\cos x)(1-\cos x)=\mathrm{M} \sin ^{N} x\)

    \(\Rightarrow 2\left(1-\cos ^{2} x\right)=M \sin ^{N} x\)

    \(\Rightarrow 2 \sin ^{2} x=M \sin ^{N} x\)

    \(\text { Comparing both sides, we have- }\)

    \(\Rightarrow M N=(2 \times 2)=4\)

  • Question 4
    3 / -1

    Find the equation of line through (-4,1,3) and parallel to the plane \(x+y+z=3\) while the line intersects another line whose equation is \(x+y-z=0=x+2 y-3 z+5\):

    Solution
    Family of planes containing the line of intersection of planes is, \({A}+\lambda {B}=0\)
    Where \(A=(x+y-z)\) and \(B=(x+2 y-3 z+5)\)
    That is,
    \((x+y-z)+\lambda(x+2 y-3 z+5)=0\)
    Above line passing through the point \((-4,1,3),\) so satisfy the equation.
    On substituting the above equation, we get,
    \(\lambda=-1\)
    \(\Rightarrow\) Equation of plane is \(y-2 z+5=0\)
    Required line is lie in this plane and is parallel to \(x+y+z=5\).
    Now.
    Direction of required line, \(=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 0 & 1 & -2\end{array}\right|=-3 \hat{i}+2 \hat{j}+\hat{k}\)
    Required line is, \(\frac{x+4}{-3}=\frac{y-1}{2}=\frac{z-3}{1}\)
  • Question 5
    3 / -1

    Evaluate: \(\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}^{\frac{2}{\mathrm{x}}}=?\)

    Solution

    Let\(\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}^{\frac{2}{\mathrm{x}}}\)

    By taking log on both sides we get.

    \(\Rightarrow \log y=\lim _{x \rightarrow \infty} \log \left(x^{\frac{2}{\mathrm{x}}}\right)\)

    \(\Rightarrow \log y=\lim _{x \rightarrow \infty} \frac{2 \log x}{x}=\frac{\infty}{\infty}\)

    So, by using L'Hospital's rule i.e. Differentiating numerator and denominator w.r.t. x.

    \(\Rightarrow \log y=\lim _{x \rightarrow \infty} \frac{\frac{2}{\mathrm{x}}}{1}=0\)

    ⇒ log y = 0

    ⇒ y = e\(^{\circ}\) = 1

  • Question 6
    3 / -1
    A line with direction cosines proportional to \((2,1,2)\) meets each of the line \({x}={y}+{a}={z}\) and \({x}+{a}=2 {y}=2 {z}\). The co-ordinates of each of the points of intersection are given by:
    Solution
    Let the equation of line \({AB}\) is \(\frac{{x}-0}{1}=\frac{{y}+{a}}{1}=\frac{{z}-0}{1}={k}\) (let)
    Therefore coordinate of \({E}\) is \(({k}, {k}-{a}, {k})\)
    Also the equation of other line \({CD}\) is \(\frac{{x}+{a}}{2}=\frac{{y}-0}{1}=\frac{{z}-0}{1}=\lambda\) (let)
    Therefore coordinate of \({F}\) is \((2 \lambda-{a}, \lambda, \lambda)\).
    Direction ratio of \({EF}\) are \(({k}-2 \lambda+{a}),({k}-\lambda-{a}),({k}-\lambda)\)
    \(\therefore \frac{{k}-2 \lambda+{a}}{2}=\frac{{k}-\lambda-{a}}{1}=\frac{{k}-\lambda}{2}\)
    On solving first and second fraction, we get,
    \(\frac{k-2 \lambda+a}{2}=\frac{k-\lambda-a}{1}\)
    \(k-2 \lambda+a=2 k-2 \lambda-2 a\)
    \({k}=3 {a}\)
    On solving second and third fraction, we get,
    \(\frac{{k}-\lambda-{a}}{1}=\frac{{k}-\lambda}{2}\)
    \(2 {k}-2 \lambda-2 {a}={k}-\lambda\)
    \(k-\lambda=2 a\)
    \(\lambda={k}-2 {a}=3 {a}-2 {a}\)
    \(\lambda=a\)
    Therefore coordinate of \({E}=(3 {a}, 2 {a}, 3 {a})\) and \({F}=({a}, {a}, {a})\)
  • Question 7
    3 / -1

    The slope of the tangent at \((x, y)\) to a curve passing through \(\left[1,\left(\frac{\pi}{4}\right)\right]\) is given by \(\left(\frac{y}{x}\right)-\cos ^{2}\left(\frac{y}{x}\right)\), then the equation of the curve is:

    Solution

    Given:

    \(\left(\frac{d y}{d x}\right)=\left(\frac{y}{x}\right)-\cos ^{2}\left(\frac{y}{x}\right)\)

    \(\text { Let }\left(\frac{y}{x}\right)=t \)

    \(\Rightarrow\left(\frac{d y}{d x}\right)=x\left(\frac{d t}{d x}\right)+t \)

    \(\Rightarrow x\left(\frac{d t}{d x}\right)+t=t-\cos ^{2} t \)

    \(\Rightarrow x\left(\frac{d t}{d x}\right)+\cos ^{2} t=0 \)

    \(\Rightarrow\left[\frac{(x-d t)}{\left(d x-\cos ^{2} t\right)}\right]+1=0 \)

    \(\Rightarrow [\frac{(d t)}{(\cos ^{2} t)}]+(\frac{d x}{x})\)

    On integrating,

    \(\Rightarrow \int \sec ^{2} t d t+\int\left(\frac{d x}{x}\right)=0 \)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log x=c \)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log x=c\)

    when \(x=1, y=\left(\frac{\pi}{4}\right)\) hence

    \(\Rightarrow \tan \left(\frac{\pi}{4}\right)=c \text { i.e. } c=1 \)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log x=\log e \)

    \(\Rightarrow \tan \left(\frac{y}{x}\right)+\log \left(\frac{e}{x}\right)\)

    \(\therefore\) The equation of the curve is \(y=x \tan ^{-1}\left[\log \left(\frac{e}{x}\right)\right]\)

  • Question 8
    3 / -1

    The value of \([\vec{a} \vec{b}+\vec{c} \vec{a}+\vec{b}+\vec{c}]\) is:

    Solution

    If \(\vec{a}, \vec{b}, \vec{c}\) are any non-zero vector then

    \([\vec{a} \vec{b} \vec{c}]=\vec{a} \cdot(\vec{b} \times \vec{c})\)

    Given,

    \([\vec{a} \vec{b}+\vec{c} \vec{a}+\vec{b}+\vec{c}]\)

    \(=\vec{a} \cdot[(\vec{b}+\vec{c}) \times(\vec{a}+\vec{b}+\vec{c})] \)

    \(=\vec{a} \cdot[\vec{b} \times \vec{a}+\vec{b} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{c} \times \vec{b}+\vec{c} \times \vec{c}] \)

    \(=\vec{a} \cdot[\vec{b} \times \vec{a}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{c} \times \vec{b}] \)

    \(=[\vec{a} \vec{b} \vec{a}]+[\vec{a} \vec{b} \vec{c}]+[\vec{a} \vec{c}]+[\vec{a} \vec{c}] \quad(\text { Since }[\vec{a} \vec{b} \vec{a}]=0) \)

    \(=[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{c}] \)

    \(=0\)

  • Question 9
    3 / -1

    What should be the value of k such that the function \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ccc}\frac{k \sin (\pi-x)}{\pi-x} & \text { if } & x \neq \pi \\ 1 & \text { if } & x=\pi\end{array}\right.\) is continuous at \(x=\pi\).

    Solution

    Given,

    \(\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{k \sin (\pi-x)}{\pi-x} & \text { if } x \neq \pi \\ 1 & \text { if } x=\pi\end{array}\right.\) is continuous at \(x=\pi .\)

    As we know that, if a function \(\mathrm{f}\) is continuous at point say a then \(\lim _{x \rightarrow a} f(x)=l=f(a)\)

    \(\Rightarrow \lim _{x \rightarrow \pi} \frac{\mathrm{ksin}(\pi-x)}{\pi-x}=\mathrm{f}(\pi)=1\)

    \(\lim _{x \rightarrow \pi} \frac{\mathrm{k} \sin (\pi-x)}{\pi-x}=\frac{0}{0},\) we can use L'Hospitals rule.

    \(\Rightarrow \lim _{x \rightarrow \pi} \frac{-\mathrm{k} \cos (\pi-x)}{-1}=1\)

    \(\Rightarrow \frac{\mathrm{k} \cos (\pi-\pi)}{1}=1\)

    \(\Rightarrow k \cos (0)=1\)

    \(\Rightarrow k=1\)

  • Question 10
    3 / -1

    Find the real and imaginary part of the complex number \(z=\frac{1-i}{1+i}\).

    Solution

    Given,

    Complex number \(z=\frac{1-i}{1+i}\)

    Multiplying by \((1-i)\) in the numerator and denominator, we get \(z=\frac{1-i}{1+i} \times \frac{1-i}{1-i}\)

    \(\Rightarrow z=\frac{(1-i)(1-i)}{1-i^{2}}\)

    \(\Rightarrow z=\frac{1+i^{2}-2 i}{1+1} \quad\left[\because i^{2}=-1\right]\)

    \(\Rightarrow z=\frac{1-1-2 i}{2}\)

    \(\Rightarrow z=\frac{0-2 i}{2}\)

    \(\Rightarrow z=0-1 i\)

    \(\therefore \operatorname{Re}(\mathrm{z})=0\) and \(\operatorname{lm}(\mathrm{z})=-1\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now