Self Studies

Mathematics Test - 7

Result Self Studies

Mathematics Test - 7
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    If \(\overrightarrow{O A}=\vec{a}\) and \(\overrightarrow{O B}=\vec{b}\), then \(\overrightarrow{B A}\) is:

    Solution

    If \(\overrightarrow{O A}\) is the position vector of \(A\) and \(\overrightarrow{O B}\) is position vector of \(B\) then,

    \(\overrightarrow{A B}=\) Position Vector of \(B\) - Position Vector of \(A\)...(I)

    \(\overrightarrow{B A}=\) Position Vector of \(A\) - Position Vector of \(B\)...(II)

    Given,

    \(\overrightarrow{O A}=\vec{a}\) and \(\overrightarrow{O B}=\vec{b}\)

    Then, by equation (II)

    \(\overrightarrow{B A}=\text { position vector of } A-\text { position vector of } B \)

    \(\overrightarrow{B A}=\overrightarrow{O A}-\overrightarrow{O B} \)

    \(\overrightarrow{B A}=\vec{a}-\vec{b}\)

  • Question 2
    3 / -1

    Find the value of \(\theta\) for which \(z=\frac{3-2 i \sin \theta}{2-i \sin \theta}\) is purely real.

    Solution

    Given,

    \(z=\frac{3-2 i \sin \theta}{2-i \sin \theta}\)

    Multiplying the numerator and denominator by \((2+i \sin \theta)\), we det

    \(z=\frac{3-2 i \sin \theta}{2-i \sin \theta} \times \frac{2+i \sin \theta}{2+i \sin \theta}\)

    \(\Rightarrow z=\frac{6+3 i \sin \theta-4 i \sin \theta-2 i^{2} \sin ^{2} \theta}{(2)^{2}-(i \sin \theta)^{2}}\)

    \(\Rightarrow z=\frac{6-i \sin \theta+2 i^{2} \sin ^{2} \theta}{4-i^{2} \sin ^{2} \theta}\)

    \(\Rightarrow z=\frac{6-i \sin \theta+2 \times(-1) \sin ^{2} \theta}{4-(-1) \sin ^{2} \theta} \quad\left[\because i^{2}=-1\right]\)

    \(\Rightarrow z=\frac{6-i \sin \theta+2 \times(-1) \sin ^{2} \theta}{4-(-1) \sin ^{2} \theta}\)

    \(\Rightarrow z=\frac{6-2 \sin ^{2} \theta}{4+\sin ^{2} \theta}+i\left(\frac{-\sin \theta}{41 \sin ^{2} \theta}\right)\)

    Imaginary part of \(z\),

    \(\operatorname{Im}(z)=\frac{-\sin \theta}{4+\sin ^{2} \theta}\)

    As we know,

    For \(z\) to be purely real, \(\operatorname{Im}(z)=0\)

    \(\therefore \frac{-\sin \theta}{4 \sin ^{2} \theta}=0 \)

    \(\sin \theta=0 \)

    \(\theta=n \pi\) where \(n\) belongs to an integer

  • Question 3
    3 / -1

    Find the are bounded between the curve \(\mathrm{y}=\mathrm{x}^{2}\) and \(\mathrm{y}=\mathrm{x}^{3}\)

    Solution

    Given: \(\mathrm{y}=\mathrm{x}^{3}\) and \(\mathrm{y}=\mathrm{x}^{2}\)

    Finding a point of intersection:

    \(\Rightarrow \mathrm{x}^{3}-\mathrm{x}^{2}=0 \Rightarrow \mathrm{x}^{2}(\mathrm{x}-1)=0 \Rightarrow \mathrm{x}=0,1\)

    Draw the graph of the curve \(\mathrm{y}=\mathrm{x}^{2}\) and \(\mathrm{y}=\mathrm{x}^{3}\)

    Let the required area be A.

    Using the formula of the area under the curve, \(\mathrm{A}=\left|\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}) \mathrm{dx}\right|\)

    \(\Rightarrow \mathrm{A}=\left|\int_{0}^{1}\left(\mathrm{x}^{3}-\mathrm{x}^{2}\right) \mathrm{dx}\right|=\left|\left[\frac{\mathrm{x}^{4}}{4}-\frac{\mathrm{x}^{3}}{3}\right]_{0}^{1}\right|\)

    Substitute the limit to evaluate the area.

    \(\Rightarrow \mathrm{A}=\left|\frac{1}{4}-\frac{1}{3}-0+0\right|=\frac{1}{12}\)

  • Question 4
    3 / -1

    What is value of \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \mathrm{x}^{5} \sin ^{4} \mathrm{xdx}\)?

    Solution

    Let f (x) = x5 sin4 x

    f (-x) = (-x)5 sin4 (-x) = -x5 (-sin x )4 = -x5 sin4 x

    ⇒ f(-x) = - f(x)

    So, f(x) is an odd function.

    We know that, when \(\mathrm{f}(\mathrm{x})\) is odd \(\Leftrightarrow \int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=0\)

    So, \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \mathrm{x}^{5} \sin ^{4} \mathrm{xdx}=0\)

  • Question 5
    3 / -1

    Order and degree of the differential equation1+dydx373=7d2ydx2are respectively-

    Solution

    We know that,

    The highest order derivative present in the differential equation is the order of the differential equation.

    The degree is the highest power of the highest order derivative in the differential equation after the equation has been cleared from fractions and the radicals as for as the derivatives are concerned.

    Given, the differential equation is,

    1+dydx373=7d2ydx2

    The order and degree of a differential equation are the integers not in fraction form.

    To find the order and degree of a differential equation, take the cube on both side.

    1+dydx3733=7d2ydx23

    1+dydx37=7d2ydx23

    The highest order derivative present in the differential equationd2ydx2Its order is 2.

    So, the order of the given differential equation is 2

    The highest degree of the derivative present in the differential equationd2ydx23. Its degree is 3.

    So, the Order and degree of the differential equation

    1+dydx373=7d2ydx2are 2 and 3 respectively

  • Question 6
    3 / -1

    If \({x}+{iy}=\frac{3+4 {i}}{2-{i}}\) where \({i}=\sqrt{-1}\), then what is the value of y?

    Solution

    Equality of complex numbers:

    Two complex numbers \(z_{1}=x_{1}+i y_{1}\) and \(z_{2}=x_{2}+i y_{2}\) are equal if and only if \(x_{1}=x_{2}\) and \(y_{1}=y_{2}\).

    or \(\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)\) and \(\operatorname{Im}\left(z_{1}\right)=\operatorname{lm}\left(z_{2}\right)\)

    Given: \({x}+{iy}=\frac{3+4 {i}}{2-{i}}\)

    \(\Rightarrow {x}+{iy}=\frac{3+4 {i}}{2-{i}} \times \frac{2+{i}}{2+{i}}\)

    \(\Rightarrow {x}+{iy}=\frac{6+11 {i}+4 {i}^{2}}{4-{i}^{2}}\)

    As we know \({i}^{2}=-1\)

    \(\Rightarrow {x}+{iy}=\frac{6+11 {i}-4}{4+1}\)

    \(\Rightarrow {x}+{iy}=\frac{2+11 {i}}{5}=\frac{2}{5}+{i} \frac{11}{5}\)

    Comparing real and imaginary parts, we get,

    \({x}=\frac{2}{5}\) and \({y}=\frac{11}{5}\)

  • Question 7
    3 / -1

    A box contains \(3\) white and \(2\) black balls. Two balls are drawn at random one after the other. If the balls are not replaced, what is the probability that both the balls are black?

    Solution

    Given,

    A box contains \(3\) white and \(2\) black balls.

    Total balls \(= 3 + 2 = 5\)

    So probability of first ball to be black \( = \frac{2}{5}\) and

    Probability of second ball to be also black \(=\frac{1}{4}\) (∵second time we have \(2 -1 = 1\) black and \(5 - 1 = 4\) total balls)

    ∴ The probability that both the balls are black \(=\frac{ 2}{5} × \frac{1}{4}\)

    \(= \frac{1}{10}\)

     

  • Question 8
    3 / -1

    The argument of the complex number \(\frac{1-\mathrm{i}}{1+\mathrm{i}},\) where \(\mathrm{i}=\sqrt{-1},\) is

    Solution

    Let, \(z=\frac{1-\mathrm{i}}{1+\mathrm{i}}\)

    or \(\mathrm{z}=\frac{1-\mathrm{i}}{1+\mathrm{i}} \times \frac{1-\mathrm{i}}{1-\mathrm{i}}=\frac{1+\mathrm{i}^{2}-2 \mathrm{i}}{1-\mathrm{i}^{2}}\)

    ⇒ z = -\(\frac{2i}{2}\) = -i

    x + iy = -i

    so, x = 0 and y = -1

    We know that, \(\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{y}{x}\right)\)

    \(\operatorname{Arg}(z)=\tan ^{-1}\left(\frac{-1}{0}\right)=-\tan ^{-1}\left(\frac{1}{0}\right)\)

    \(\operatorname{Arg}(z)=-\tan ^{-1}(\infty)=-\frac{\pi}{2}\)

  • Question 9
    3 / -1
    If the line, \(\frac{(x-3)}{1}=\frac{(y-2)}{-1}=\frac{(z+\lambda)}{-2}\) lie in the plane, \(2 x-4 y+3 z=2\), then the shortest distance between this line and the line \(\frac{(x-1)}{12}=\frac{y}{9}=\frac{z}{4}\) is:
    Solution

    Given,

    \(\frac{(x-3)}{1}=\frac{(y-2)}{-1}=\frac{(z+\lambda)}{-2}=k\)

    Let \(P\) be any point on the plane,

    \(P=(k+3,-k-2,-2 k-\lambda)\)

    \(P\) lie on the plane, \(2 x-4 y+3 z=2,\) Which means \(P\) satisfy the equationn of plane.

    So, \(2(k+3)-4(-k-2)+3(-2 k-\lambda)=2\)

    Solving above equation, we have \(\lambda=4\)

    Now, the shortest distance between the below lines:

    \(\frac{(x-3)}{1}=\frac{(y-2)}{-1}=\frac{(z+4)}{-2}\) and \(\frac{(x-1)}{12}=\frac{y}{9}=\frac{z}{4}\) is:

    \(\begin{aligned} \mathrm{d}^{2} &=\left|\begin{array}{ccc}x_{1}-x_{2} & y_{1}-y_{2} & z_{1}-z_{2} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right| \\ &=\left|\begin{array}{ccc}3-1 & -2-0 & -4-0 \\ 1 & -1 & -2 \\ 12 & 9 & 4\end{array}\right| \end{aligned}\)

    \(=\mid2(14)+2(28)-4(21) \mid\)

    \(=0\)

    \(d^{2}=0\) or \({d}=0\)

  • Question 10
    3 / -1

    Find the standard deviation of \(\{7,13,15,11,4\}\).

    Solution

    Given,

    \(7,13,15,11,4\)

    Formula used:

    \(\mathrm{S} . \mathrm{D}=\sqrt{\frac{\sum|x-m|^{2}}{n}}\)

    Mean \((m)=\frac{\text { Total of observations }}{\text { number of observations }}\)

    \(\mathrm{S.D}=\) standard deviation

    \(\sum=\) summation

    \(x=\) observation

    \(m=\) mean of the observations

    \(n=\) number of observation

    Mean of \(7,13,15,11,4\)

    \(=\frac{50}{5}=10\)

    \(\text { S.D }=\sqrt{\frac{(7-10)^{2}+(13-10)^{2}+(15-10)^{2}+(11-10)^{2}+(4-10)^{2}}{5}}\)

    \(=\sqrt{\frac{9+9+25+1+36}{5}}\)

    \(=\sqrt{\frac{80}{5}} \)

    \(=\sqrt{16}=4\)

    \(\therefore\) The standard deviation is \(4\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now