Self Studies

Mathematics Test - 8

Result Self Studies

Mathematics Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    The mean of \(8\) observations is \(25\). The \(7\) observations are \(30, 24, 27, 22, 18, 26, 32\). What is the \(8\)th observation?

    Solution

    Let the missing number be \(x\).

    Given:

    Mean = \(25\), Total elements = \(8\)

    Mean of n elements \(=\frac{\text { Sum of all n elements }}{\text { Total number of elements (n) }}\)

    \(\Rightarrow \frac{30+24+27+22+18+26+32+x}{8}=25\)

    \(\Rightarrow 179+x=200\)

    \(x=21\)

  • Question 2
    3 / -1

    The variance of the first \(20\) natural numbers is:

    Solution

    We know that,

    Mean: \((\bar{x})=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{\sum x_{i}}{n}\)

    Mean of first 20 natural numbers \((\bar{x})=\frac{1+2+\ldots+20}{20}\)

    \(=\frac{\sum_{x=1}^{20} x}{20} \)

    \(=\frac{20(20+1)}{2 \times 20}=10.5\)

    And variance is:

    \(\sigma^{2}=\frac{\sum x_{i}^{2}}{n}-\bar{x}^{2} \)

    \(=\frac{n(n+1)(2 n+1)}{6 n}-\bar{x}^{2} \)

    \(=\frac{21 \times 41}{6}-10.5^{2} \)

    \(=33.25=\frac{133}{4}\)

  • Question 3
    3 / -1

    What is \(\int \frac{\mathrm{dx}}{\mathrm{x}\left(\mathrm{x}^{7}-1\right)}\) equal to?

    Solution

    \(I=\int \frac{d x}{x\left(x^{7}-1\right)}\)

    Let, \(x^{7}-1=t\)

    Differentiate both sides w.r.t \(x\)

    \(\Rightarrow 7 x^{6} d x=d t\)

    \(\Rightarrow {dx}=\frac{{dt}}{7 {x}^{6}}\)

    Substitute above values in given integration,

    \(I=\frac{1}{7} \int \frac{{dt}}{{x}^{7} t}\)

    \({I}=\frac{1}{7} \int \frac{{dt}}{{t}({t}+1)} \quad\left[\because {x}^{7}={t}+1\right]\)

    \({I}=\frac{1}{7} \int \frac{{d} t}{{t}^{2}+{t}}\)

    By completing square method,

    \(I=\frac{1}{7} \int \frac{d t}{t^{2}+t+\frac{1}{4}-\frac{1}{4}}\)

    \(I=\frac{1}{7} \int \frac{d t}{\left(t+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}\)

    \({I}=\frac{1}{7} \log \left|\frac{{t}}{{t}+1}\right|+{C}\)

    From eq. (i)

    \(I=\frac{1}{7} \log \left|\frac{x^{7}-1}{x^{7}} \right| +C\)

  • Question 4
    3 / -1

    What is the rate of change of \(\sqrt{\mathrm{x}^{2}+48}\) relative to \(\mathrm{x}^{2}\) at \(\mathrm{x}=4 ?\)

    Solution

    To Find: Rate of change of \(\sqrt{x^{2}+48}\) with respect to \(x^{2}\)

    Let \(u\) be \(\sqrt{x^{2}+48}\) and \(v\) be \(x^{2}\)

    \(\frac{d u}{d x}=\frac{1 \times 2 x}{2 \sqrt{\left(x^{2}+48\right)}}=\frac{x}{\sqrt{\left(x^{2}+48\right)}}\)

    \(\frac{d v}{d x}=2 x\)

    \(\frac{d u}{d v}=\frac{\frac{d u}{d x}}{\frac{d v}{d x}}=\frac{\frac{x}{\sqrt{\left(x^{2}+48\right)}}}{2 x}=\frac{x}{\sqrt{\left(x^{2}+48\right)}} \times \frac{1}{2 x}\)

    \(\frac{d u}{d v}=\frac{1}{2 \sqrt{\left(x^{2}+48\right)}}\)

    At \(x=4\)

    \(\frac{d u}{d v}=\frac{1}{2 \sqrt{\left(4^{2}+48\right)}}\)

    \(\frac{d u}{d v}=\frac{1}{2 \sqrt{64}}=\frac{1}{16}\)

    \(\therefore \frac{d u}{d v}=\frac{1}{16}\)

  • Question 5
    3 / -1

    If tan-1 2, tan-1 3 are two angles of a triangle, then what is the third angle?

    Solution

    Consider the third angle as A

    Given, tan-1 2, tan-1 3 are two angles of a triangle.

    We know that,

    \(\tan ^{-1} {a}+\tan ^{-1} {b}=\tan ^{-1}\left(\frac{{a}+{b}}{1-{ab}}\right)\)

    Consider

    \(\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}\left(\frac{2+3}{1-2.3}\right)\)

    \(\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}\left(\frac{5}{-5}\right)\)

    \(\tan ^{-1} 2+\tan ^{-1} 3=\tan ^{-1}(-1)\)

    \(\tan ^{-1} 2+\tan ^{-1} 3=\frac{3 \pi}{4}\)

    Now, the sum of angles of the triangle is 180º i..e π.

    \(\tan ^{-1} 2+\tan ^{-1} 3+{A}=\pi\)

    \(\frac{3 \pi}{4}+A=\pi\)

    \({A}=\frac{\pi}{4}\)

    If tan-1 2, tan-1 3 are two angles of a triangle, then the third angle is \(\frac{\pi}{4}\).

  • Question 6
    3 / -1

    Evaluate:

    \(2(\sec A-\cos A)^{2}+2(\operatorname{cosec} A-\sin A)^{2}-2(\cot A-\tan A)^{2}-2\)

    Solution

    Given,

    \(2(\sec A-\cos A)^{2}+2(\operatorname{cosec} A-\sin A)^{2}-2(\cot A-\tan A)^{2}-2\)

    \(=2\left[(\sec A-\cos A)^{2}+(\operatorname{cosec} A-\sin A)^{2}-(\cot A-\tan A)^{2}-1\right]\)

    \(=2\left[\sec ^{2} A+\cos ^{2} A-2 \sec A \cos A+\operatorname{cosec}^{2} A+\sin ^{2} A-2 \operatorname{cosec} A \sin A-\cot ^{2} A-\tan ^{2} A+2 \cot A \tan A-1\right]\)

    \(=2[\sec ^{2} A+\cos ^{2} A-2+\operatorname{cosec}^{2} A+\sin ^{2} A-2-\cot ^{2} A-\tan ^{2} =2[(\cos ^{2} A+\sin ^{2} A)+(\sec ^{2} A-\tan ^{2} A)+(\operatorname{cosec}^{2} A-\cot ^{2} A)-3]\)

    \({\left[\because \cos ^{2} A+\sin ^{2} A=1, \sec ^{2} A-\tan ^{2} A=1 \text { and } \operatorname{cosec}^{2} A-\cot ^{2} A=1\right]}\)

    \(=2[1+1+1-3]\)

    \(=0\)

  • Question 7
    3 / -1

    If \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}\) then the angle between \(\vec{a}+\vec{b}, \vec{a}-\vec{b}\) is:

    Solution

    Given,

    \(\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \)

    \(\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}\)

    So,

    \((\vec{a}+\vec{b})=(\hat{i}+3 \hat{i})+(\hat{2 j}-\hat{j})+(-\hat{3} k+2 \hat{k}) \)

    \(\Rightarrow \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=4 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathrm{k}} \)

    \((\vec{a}-\vec{b})=(\hat{i}-3 \hat{i})+(\hat{2 j}-(-\hat{j}+(-\hat{3} k-2 \hat{k}) \)

    \(\Rightarrow \overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}\)

    Then,

    \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=(4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \cdot(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}) \)

    \((\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=-8+3+5=0 \)

    \(\text { If }(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0\)

    Then angle between two vectors is \(90^{\circ} .\)

  • Question 8
    3 / -1

    A medicine is known to be \(50 \%\) effective to cure a patient. If the medicine is given to \(4\) patients, what is the probability that at least one patient is cured by this medicine?

    Solution

    Here, probability of medicine to cure patient \(=\frac{1}{2}\)

    And, probability of none cured \(=1-\frac{1}{2}=\frac{1}{2}\)

    The probability that at least one patient is cured by this medicine =

    1 - none patient cured by this medicine

    \(=1-\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right) \times\left(\frac{1}{2}\right) \)

    \(=1-\left(\frac{1}{2}\right)^{4} \)

    \(=\frac{15}{16}\)

  • Question 9
    3 / -1

    The solution of the differential equation \(\frac{d y}{d x}=y\left(1-3 x^{2}\right)\) is:

    Solution

    The given equation is,

    \(\frac{d y}{d x}=y\left(1-3 x^{2}\right)\)

    \(\Rightarrow\frac{d y}{y}=\left(1-3 x^{2}\right) d x\)

    Integrating both side, we get,

    \(\int \frac{d y}{y}=\int\left(1-3 x^{2}\right) d x\)

    We know that,

    \(\int\frac{dx}{x}=\log x\) and \(\int x^n dx=\frac{x^{n+1}}{n+1}\)

    \(\therefore\log y=x-x^{3}+c\)

    We also know that,

    If \(\log x = n\) then \(x=e^n\)

    \(\therefore y=e^{x-x^{3}+c}\)

    \(\Rightarrow y=e^{x-x^{3}}. e^{c}\)

    \(\Rightarrow y=C e^{x\left(1-x^{2}\right)}\quad\) \([\)Let \(e^c=C]\)

  • Question 10
    3 / -1

    What is the most probable number of successes in \(10\) trials with probability of success \(\frac{2}{3}\)?

    Solution

    Given,

    Probability of success \(\frac{2}{3}\) and number of trials is \(10\).

    Consider, the most probable number of successes in \(10\) trials with probability of success \(\frac{2}{3}\) is \(n\).

    Now, \({n}=\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\ldots\) (\(10\) times)

    \({n}=\frac{2}{3} \times 10 \)

    \(\Rightarrow n=6.67 \)

    \(\Rightarrow n=7\)

    The most probable number of successes in \(10\) trials with probability of success \(\frac{2}{3}\) is \(7\).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now